Клинический разбор в общей медицине

Clinical review for general practice
ISSN (Print) 2713-2552
ISSN (Online) 2782-5671
  • Главная
  • О журнале
  • Архив
  • Контакты
Левый блок
Полноэкранный режим > Архив > 2021 > Том 2, №2 (2021) > Влияние новой коронавирусной инфекции на мочеполовую систему. Иммунонутриенты как метод патогенетического воздействия при COVID-19

Влияние новой коронавирусной инфекции на мочеполовую систему. Иммунонутриенты как метод патогенетического воздействия при COVID-19

Для цитирования:


  • Аннотация
  • Об авторе
  • Список литературы

Аннотация

12 декабря 2019 г. в китайском Ухане обнаружен новый коронавирус, вызвавший вспышку тяжелого острого респираторного заболевания у людей (COVID-19), быстро распространившуюся по всему миру; 11 марта 2020 г. Всемирная организация здравоохранения признала сложившуюся ситуацию пандемией. COVID-19 является системным заболеванием. Почки могут быть одной из мишеней, поскольку вирус проникает в клетки через рецептор ангиотензинпревращающего фермента, который присутствует в почках. Инвазия вируса в клетки почек подтверждается большим количеством случаев ренальной дисфункции у пациентов с COVID-19. Этиотропного лечения COVID-19 не существует, антибиотики при этой инфекции не показаны. Целесообразно повышать невосприимчивость макроорганизма – в первую очередь путем вакцинации, а также за счет нормализации микробиоты кишечника и восстановления витаминно-минерального баланса. Витамины С и Е, микроэлементы селен и цинк существенно повышают устойчивость организма к вирусной инфекции. Ожидается скачок резистентности патогенов как результат широкомасштабного применения антибиотиков в лечении COVID-19. В полной мере последствия пандемии можно будет оценить позже. В настоящее время следует максимально строго подходить к назначению антибиотиков больным инфекционно-воспалительными заболеваниями органов мочеполовой системы. Если этиотропная антибактериальная терапия неизбежна – ее необходимо сопровождать патогенетической, назначать иммунонутрицевтики.

Ключевые слова: коронавирус, урологическая помощь, лечение, инфекции, урогенитальные инфекции.

Об авторе

Е.В. Кульчавеня

ФГБУ «Новосибирский научно-исследовательский институт туберкулеза» Минздрава России, Новосибирск, Россия;
ФГБОУ ВПО «Новосибирский государственный медицинский университет» Минздрава России, Новосибирск, Россия

urotub@yandex.ru

Список литературы

1. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis 2020; 94: 44–8. DOI: 10.1016/j.ijid.2020.03.004
2. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res 2011; 81: 85–164.
3. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020; 92: 418–23. 10.1002/jmv.25681
4. Sohrabi C, Alsafi Z, O'Neill N et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76: 71–6. DOI: 10.1016/j.ijsu.2020.02.034
5. Кульчавеня Е.В., Холтобин Д.П., Неймарк А.И. Работа урологического отделения во время эпидемии COVID-19. Урологические ведомости. 2020; 10 (4): 301–7. DOI: 10.17816/uroved52792
[Kulchavenya E.V., Holtobin D.P., Neimark A.I. The work of the urology department during the COVID-19 epidemic. Urological statements 2020; 10 (4): 301–7. DOI: 10.17816/uroved52792 (in Russian).]
6. Connor MJ, Winkler M, Miah S. COVID‐19 pandemic – is virtual urology clinic the answer to keeping the cancer pathway moving? BJU Int 2020. DOI: 10.1111/bju.15061
7. Ahmed K, Hayat S, Dasgupta P. Global challenges to urology practice during the COVID‐19 pandemic. BJU Int. 2020. DOI: 10.1111/bju.15082
8. Porpiglia F, Checcucci E, Amparore D et al. Slowdown of urology residents' learning curve during the COVID-19 emergency. BJU Int 2020; 125 (6): E15-E17. DOI: 10.1111/bju.15076
9. Puliatti S, Eissa A, Eissa R et al. COVID-19 and urology: a comprehensive review of the literature. BJU Int 2020; 125 (6): E7-E14. DOI: 10.1111/bju.15071
10. Ficarra V, Novara G, Abrate A et al; Research Urology Network (RUN). Urology practice during the COVID-19 pandemic. Minerva Urol Nefrol 2020; 72 (3): 369–75. DOI: 10.23736/S0393-2249.20.03846-1
11. Dasgupta P. Covid-19 and urology. BJU Int 2020; 125 (6): 749. DOI: 10.1111/bju.15104
12. Hassanein M, Radhakrishnan Y, Sedor J et al. COVID-19 and the kidney. Cleve Clin J Med 2020; 87 (10): 619–31. DOI: 10.3949/ccjm.87a.20072
13. Hanff TC, Harhay MO, Brown TS et al. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System? A Call for Epidemiologic Investigations. Clin Infect Dis 2020; 71 (15): 870–4. DOI: 10.1093/cid/ciaa329
14. Cheng Y, Luo R, Wang K et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97 (5): 829–38. DOI: 10.1016/j.kint.2020.03.005
15. Ковылина М.В., Астахова О.И., Зайратьянц О.В. и др. Острое повреждение почек при COVID-19: клинико-морфологические сопоставления на основании данных аутопсийных исследований. Урология. 2020; 6: 5–10. DOI: 10.18565/urology.2020.6.5-10
[Kovylina M.V., Astakhova O.I., Zayratyants O.V. et al. Acute kidney injury in COVID-19: clinical and morphological comparisons based on autopsy data. Urology 2020; 6: 5–10. DOI: 10.18565/urology.2020.6.5-10 (in Russian).]
16. Su H, Yang M, Wan C et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98 (1): 219–27. DOI: 10.1016/j.kint.2020.04.003
17. Varga Z, Flammer AJ, Steiger P. Endothelial cell infection and endotheliitis in Covid-19. Lancet 2020; 395 (10234): 1417-8. DOI: 10.1016/S0140-6736(20)30937-5
18. Nadim MK, Forni LG, Mehta RL et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol 2020; 16 (12): 747–64. DOI: 10.1038/s41581-020-00356-5
19. Кульчавеня Е.В., Чередниченко А.Г., Неймарк А.И., Шевченко С.Ю. Частота встречаемости госпитальных уропатогенов и динамика их чувствительности. Урология. 2015; 2: 13–6. 
[Kulchavenya E.V., Cherednichenko A.G., Neimark A.I., Shevchenko S.Yu. Frequency of occurrence of hospital uropathogens and dynamics of their sensitivity. Urologiia. 2015; 2: 13–6 (in Russian).]
20. Палагин И.С., Сухорукова М.В., Дехнич А.В. и др. Состояние антибиотикорезистентности возбудителей внебольничных инфекций мочевыводящих путей в России, Беларуси и Казахстане: результаты многоцентрового международного исследования «Дармис-2018». Урология. 2020; 1: 19–31. 
[Palagin I.S., Sukhorukova M.V., Dekhnich A.V. et al. The state of antibiotic resistance of pathogens of community-acquired urinary tract infections in Russia, Belarus and Kazakhstan: results of the multicenter international study "Darmis-2018". Urologiia. 2020; 1: 19–31 (in Russian).]
21. Di Renzo L, Gualtieri P, Pivari F, et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med 2020; 18 (1): 415. DOI: 10.1186/s12967-020-02594-4
22. Iddir M, Brito A, Dingeo G et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12 (6): 1562. DOI: 10.3390/nu12061562
23. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res 2020; 285: 198018. DOI: 10.1016/j.virusres.2020.198018
24. Bold J, Harris M, Fellows L, Chouchane M. Nutrition, the digestive system and immunity in COVID-19 infection. Gastroenterol Hepatol Bed Bench 2020; 13 (4): 331–40
25. Jayawardena R, Sooriyaarachchi P, Chourdakis M et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14 (4): 367–82. DOI: 10.1016/j.dsx.2020.04.015
26. Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020; 12 (6): 1769. DOI: 10.3390/nu12061769
27. Кульчавеня Е.В. Новый подход к пониманию патогенеза и к лечению инфекционно-воспалительных заболеваний мочеполовой системы. Урология. 2020; 5: 99–105.
[Kulchavenya E.V. A new approach to understanding the pathogenesis and treatment of infectious and inflammatory diseases of the genitourinary system. Urologiia. 2020; 5: 99–105 (in Russian).]
28. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 2020; 3 (1): 74–92. DOI: 10.1136/bmjnph-2020-000085
29. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun 2020; 87: 53–4. DOI: 10.1016/j.bbi.2020.04.040
30. Calder PC. Feeding the immune system. Proc Nutr. Soc 2013; 72: 299–309. 10.1017/S0029665113001286
31. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune System–Working in harmony to reduce the risk of infection. Nutrients 2020; 12: E236 10.3390/nu12010236
32. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 2007; 51: 301–23. 10.1159/000107673
33. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 2007; 98 (Suppl 1): S29-35. DOI: 10.1017/S0007114507832971
34. Maggini S, Pierre A, Calder P. Immune function and micronutrient requirements change over the life course. Nutrients 2018; 10: 1531. DOI: 10.3390/nu10101531
35. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front Immunol 2019; 9: 3160. DOI: 10.3389/fimmu.2018.03160
36. Alpert PT. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract 2017; 29: 199–202. DOI: 10.1177/1084822317713300
37. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14. DOI: 10.1038/nature11234
38. Lomax A, Calder P. Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharmaceut Design 2009; 15: 1428–518. DOI: 10.2174/138161209788168155
39. Jafarnejad S, Shab-Bidar S, Speakman JR et al. Probiotics Reduce the Risk of Antibiotic-Associated Diarrhea in Adults (18–64 Years) but Not the Elderly (>65 Years): A Meta-Analysis. Nutr Clin Pract 2016; 31 (4): 502–13. DOI: 10.1177/0884533616639399
40. Lau CS, Chamberlain RS. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 2016; 9: 27–37. DOI: 10.2147/IJGM.S98280
41. Llang T. Handbook of COVID-19 prevention and treatment, 2020. https://covid19.alnap.org/help-library/handbook-of-covid-19-prevention-and-treatment
42. Xu K, Cai H, Shen Y et al. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49 (1): 147–57. DOI: 10.3785/j.issn.1008-9292.2020.02.02
43. Zhang N, He Q-S. Commensal microbiome promotes resistance to local and systemic infections. Chin Med J 2015; 128: 2250–5. DOI: 10.4103/0366-6999.162502
44. Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via NOD-like receptor ligands. Infect Immun 2014; 82: 4596–606. DOI: 10.1128/IAI.02212-14
45. Carr A, Maggini S. Vitamin C and immune function. Nutrients 2017; 9: 1211. DOI: 10.3390/nu9111211
46. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013: CD000980. DOI: 10.1002/14651858.CD000980.pub4
47. Hemilä H. Vitamin C and infections. Nutrients 2017; 9: 339. DOI: 10.3390/nu9040339
48. Lee G, Han S. The role of vitamin E in immunity. Nutrients 2018; 10: 614. DOI: 10.3390/nu10111614
49. Meydani SN, Barklund MP, Liu S et al. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr 1990; 52 (3): 557–63. DOI: 10.1093/ajcn/52.3.557
50. Chavance M, Herbeth B, Fournier C et al. Vitamin status, immunity and infections in an elderly population. Eur J Clin Nutr 1989; 43 (12): 827–35.
51. Hemilä H. Vitamin E administration may decrease the incidence of pneumonia in elderly males. Clin Interv Aging 2016; 11: 1379–85. DOI: 10.2147/CIA.S114515
52. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10 (4): 696–710. DOI: 10.1093/advances/nmz013
53. Kaushik N, Subramani C, Anang S et al. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase. J Virol 2017; 91 (21): e00754-17. DOI: 10.1128/JVI.00754-17
54. Kang S, Li R, Jin H et al. Effects of Selenium- and Zinc-Enriched Lactobacillus plantarum SeZi on Antioxidant Capacities and Gut Microbiome in an ICR Mouse Model. Antioxidants (Basel) 2020; 9 (10): 1028. DOI: 10.3390/antiox9101028
55. Hasan R, Rink L, Haase H. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immun 2013; 19: 253–64. DOI: 10.1177/1753425912458815
56. Roy M, Kiremidjian-Schumacher L, Wishe HI et al. Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol Trace Elem Res 1994; 41 (1–2): 103–14. DOI: 10.1007/BF02917221. Erratum in: Biol Trace Elem Res 1994; 46 (1–2): 183.
57. Hawkes WC, Kelley DS, Taylor PC. The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res 2001; 81: 189–213. DOI: 10.1385/BTER:81:3:189
58. Peretz A, Nève J, Desmedt J et al. Lymphocyte response is enhanced by supplementation of elderly subjects with selenium-enriched yeast. Am J Clin Nutr 1991; 53 (5): 1323–8. DOI: 10.1093/ajcn/53.5.1323
59. Broome CS, McArdle F, Kyle JA et al.  An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 2004; 80 (1): 154–62. DOI: 10.1093/ajcn/80.1.154
60. Leung C. Clinical features of deaths in the novel coronavirus epidemic in China. Rev Med Virol 2020; 30:e2103. 10.1002/rmv.2103
61. Fowler Iii AA, Kim C, Lepler L et al. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med 2017; 6 (1): 85–90. DOI: 10.5492/wjccm.v6.i1.85
62. Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. Pharma Nutrition 2020: 100190. DOI: 10.1016/j.phanu.2020.100190
63. Boudreault F, Pinilla-Vera M, Englert JA et al. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2017; 2 (11): e86507. DOI: 10.1172/jci.insight.86507
64. Mahmoodpoor A, Hamishehkar H, Shadvar K et al. The Effect of Intravenous Selenium on Oxidative Stress in Critically Ill Patients with Acute Respiratory Distress Syndrome. Immunol Invest 2019; 48 (2): 147 et al. 59. DOI: 10.1080/08820139.2018.1496098


Для цитирования:Кульчавеня Е.В. Влияние новой коронавирусной инфекции на мочеполовую систему. Иммунонутриенты как метод патогенетического воздействия при COVID-19. Клинический разбор в общей медицине. 2021; 2: 38–43. DOI: 10.47407/kr2021.2.2.00041


Журнал предоставляет свободный доступ с возможностью использовать статьи в некоммерческих целях при условии указания авторства в рамках лицензии CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ru)

  • О журнале
  • Редколегия
  • Редакционная этика
  • Авторам
  • Плата за публикацию
  • Порядок рецензирования
  • Контакты
   

oa
crossref
анри


  Индексация

doaj
elibrary_rus.png

Почтовый адрес издателя

127055, Москва, а/я 37

Адрес редакции

115054, Москва, Жуков пр-д, 19, эт. 2, пом. XI


По вопросам публикаций

+7 (495) 926-29-83

id@con-med.ru