Fatima Kh. Dzgoeva , Olga A. Radaeva , Madina I. Asadulaeva , Elizaveta M. Vardanyan , Diana S. Rafikova , Ekaterina A. Troshina
Abstract
The paper reports clinical cases of obese patients who have had severe coronavirus infection (COVID-19): one case of damage to the gastrointestinal tract, and one case of neurological manifestation worsening (possible cognitive impairment). Assessment and therapeutic treatment of obese patients is challenging in terms of high thromboembolic complication rate. When choosing comprehensive treatment, dietary care and drug therapy, the improvement was observed in the form of gradual regression of disorders and further body weight reduction, which had a potential to affect the risk of complications, and to improve the overall quality of life of the patients.
Key words: obesity, coronavirus infection, dietary care, nutritional support, COVID-19, SARS-CoV-2.
Key words: obesity, coronavirus infection, dietary care, nutritional support, COVID-19, SARS-CoV-2.
About the Author
Fatima Kh. Dzgoeva 1 , Olga A. Radaeva 2 , Madina I. Asadulaeva 3 4 , Elizaveta M. Vardanyan 1 , Diana S. Rafikova 1 , Ekaterina A. Troshina 11 Endocrinology Research Centre, Moscow, Russia, Moscow, Russia
2 National Research Mordovian State University named after N.P. Ogarev, Saransk, Russia;
3 Dagestan State Medical University, Makhachkala, Republic of Dagestan, Russia
4 City Clinical Hospital, Makhachkala, Republic of Dagestan, Russia
References
1. Soy M, Keser G, Atagündüz P et al. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39, 2085–94.
2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA 2020; 323 (13): 1239.
3. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054–62.
4. Cai Q, Chen F, Wang T et al. Obesity and COVID-19 severity in a designated hospital in shenzhen, China. Diabetes Care 2020; 43 (7): 1392–8.
5. Williamson E, Walker A, Bhaskaran K et al. OpenSAFELY: Factors Associated with COVID-19-Related Hospital Death in the Linked Electronic Health Records of 17 Million Adult NHS Patients, medRxiv preprint, 2020. DOI: 10.1101/2020.05.06.20092999
6. Muromtseva GA, Kontsevaya AV, Konstantinov VV et al. The prevalence of non-infectious diseases risk factors in Russian population in 2012–2013 years. The results of ECVD-RF. Cardiovascular Ther Prevention 2014; 13 (6): 4–11.
7. Yumuk V, Tsigos C, Fried M et al. European Guidelines for Obesity Management in Adults. Ed. PV Nerurkar. Obes Facts 2015; 8 (6): 402–24.
8. Bourgeois C, Gorwood J, Barrail-Tran A et al. Specific biological features of adipose tissue, and their impact on HIV persistence. Front Microbiol 2019; 10: 2837.
9. WHO. Obesity and overweight. Available from: https://www.who. int/ru/news-room/fact-sheets/detail/obesity-and-overweight
10. Garg S, Kim L, Whitaker M et al. Hospitalization Rates and Characteristics of Patients Hospitalized with LaboratoryConfirmed Coronavirus Disease 2019 – COVID-NET, 14 States, March 1–30, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69: 458–64.
11. Qingxian C, Fengjuan C, Fang L et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China (3/13/2020). Lancet 2020.
12. Simonnet A, Chetboun M, Poissy J et al. High prevalence of besity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring), April 9, 2020
13. Ritter A, Kreis N-N, Louwen F, Yuan J. Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. J Mol Sci. 2020; 21: 5793.
14. Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. Biomolecules 2020; 10 (2): 291.
15. Maffetone PB, Laursen PB. The Perfect Storm: Coronavirus (Covid-19) Pandemic Meets Overfat Pandemic. Front Public Heal 2020; 8 (20): 3415–22.
16. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017; 174: 3496–513. DOI: 10.1111/bph.13705
17. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017; 174: 3496–513. DOI: 10.1111/bph.13705
18. Uchasova EG, Gruzdeva OV, Dyleva YuA et al. The role of immune cells in the development of adipose tissue dysfunction in cardiovascular diseases: Russian Journal of Cardiology 2019; 24 (4): 92–8.
19. Chen G, Wu D, Guo W et al. Clinical and immunological features of severe and moderate coronavirus disease 2020. J Clin Invest 2020; 130 (5): 2620–9. DOI: 10.1172/JCI137244
20. Castoldi A, Naffah de Souza C et al. The macrophage switch in obesity development. Front Immunol 2015; 6: 637. DOI: 10.3389/fimmu.2015.00637
21. Romantsova TR, Sych YuP. Immunometabolism and metainflammation in obesity. Obesity and metabolism 2019; 16 (4): 3–17.
22. Slonska A, Cymerys J, Banbura MW. Mechanisms of endocytosis utilized by viruses during infection. Postepy Hig Med Dosw 2016; 70.
23. Martin S. Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects. Horm Mol Biol Clin Investig 2013; 15: 11–8. DOI: 10.1515/hmbci-2013-0035
24. Le Lay S, Blouin CM, Hajduch E, Dugail I. Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim Biophys Acta 2009; 1791.
25. Ludwig A, Nguyen TH, Leong D et al. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly.
J Cell Sci 2017; 130.
26. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76.
27. Kane H, Lynch L. Innate immune control of adipose tissue homeostasis. Trends Immunol 2019; 40.
28. Beck MA, Handy J, Levander OA. Host nutritional status: The neglected virulence factor. Trends Microbiol 2004; 12: 417–23.
29. Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients 2018; 10: 604.
30. Martinez-Gonzalez MA, Bes-Rastrollo M. Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr Opin Lipidol 2014; 25: 20–6.
31. Estruch R, Ros E, Salas-Salvadó J et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018; 378: e34.
32. Kapiszewska M, Soltys E, Visioli F et al. The protective ability of the Mediterranean plant extracts against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content. J Physiol Pharmacol Suppl 2005; 56: 183–97.
33. Bonaccio M, Pounis G, Cerletti C et al. Mediterranean diet, dietary polyphenols and low grade inflammation: Results from the
MOLI-SANI study. Br J Clin Pharmacol 2017; 83: 107–13.
34. Cheng YC, Sheen JM, Hu WL, Hung YC. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell Longev 2017; 2017: 16.
33. Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59: S81–S95.
36. Tierney A, Lordan R, Tsoupras A, Zabetakis I. Chapter 8-Diet and cardiovascular disease: The Mediterranean diet. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Eds. I Zabetakis,
R Lordan, A Tsoupras; Academic Press: Cambridge, MA, USA, 2019; pp. 267–88.
37. Kaluza J, Harris HR, Linden A, Wolk A. Long-term consumption of fruits and vegetables and risk of chronic obstructive pulmonary disease: A prospective cohort study of women. Int J Epidemiol, 2018; 47: 1897–909.
38. Holt EM, Steffen LM, Moran A et al. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 2009; 109: 414–21.
39. Cheng Y-C, Sheen J-M, Hu WL, Hung Y.-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell Longev 2017; 2017: 16.
40. Serino A, Salazar G. Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients 2018; 11: 53.
41. Lichota A, Gwozdzinski L, Gwozdzinski K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur J Med Chem 2019; 176: 68–91.
42. Chandra RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. Lancet 1992; 340: 1124–7.
43. Drake JV, Higdon J. An evidence-based approach to phytochemicals and other dietary factors, 2nd edition, 2013.
44. Morita M, Kuba K, Ichikawa A et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 2013; 153: 112–25.
45. Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. Immunology 2013; 141: 166–73.
46. Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59: S81–S95.
47. Bhat ZF, Kumar S, Bhat HF. Antihypertensive peptides of animal origin: A review. Crit Rev Food Sci Nutr 2017; 57: 566–78.
48. te Velthuis AJ, van den Worm SH, Sims AC et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6: e1001176.
49. Schley PD, Field CJ. The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 2007; 87: S221–S230.
50. Arrieta MC, Meddings J, Field CJ. The immunomodulatory effects of dietary fiber and prebiotics in the gastrointestinal tract. In Nondigestible Carbohydrates and Digestive Health; Paeschke TM, Aimutis WR. Eds.; Blackwell Publishing Ltd. and Institute of Food Technologists: Ames, IA, USA, 2011; pp. 37–77.
51. Roberfroid M, Gibson GR, Hoyles L et al. Prebiotic effects: Metabolic and health benefits. Br J Nutr 2010; 104: S1–S63.
52. Hannah E Maier, Roger Lopez, Nery Sanchez et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults. J Infectious Dis 2018; 218 (9): 1378–82. DOI: 10.1093/infdis/jiy370
53. Vremennye metodicheskie rekomendatsii Minzdrava Rossii. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii COVID-19 (versiia 11 ot 07.05.2021). Moscow, 2021 (in Russian).
54. Balykova L.A., Govorov A.V., Vasil'ev A.O. et al. Osobennosti koronavirusnoi infektsii COVID-19 i vozmozhnosti rannego nachala etiotropnoi terapii. Rezul'taty klinicheskogo primeneniia favipiravira. Infektsionnye bolezni. 2020; 18 (3): 30–40. DOI: 10.20953/1729-9225-2020-3-30-40 (in Russian).
55. Mezhdistsiplinarnye klinicheskie rekomendatsii. Lechenie ozhireniia i komorbidnykh zabolevanii. Ozhirenie i metabolizm. 2021; 18 (1): 5–99. DOI: 10.14341/omet12714 (in Russian).
For citation:Dzgoeva F. Kh., Radaeva O.A., Asadulaeva M.I. et al. A long journey to COVID-19 in obese patients. Clinical review for general practice. 2021; 4: 19–32. DOI: 10.47407/kr2021.2.4.00057
All accepted articles publish licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.