Dmitry I. Trukhan , Evgeny L. Davydov , Natalia A. Chusova
Abstract
This review addresses the issues of non-specific prevention of new coronavirus infection (COVID-19) using vitamin and mineral complexes, pro-biotics and rebamipide. The data on the possibilities of vitamins A, C, E and microelements selenium and zinc in the prevention and treatment of patients with COVID-19 infection are presented. The possible use of vitamin and mineral complexes in the rehabilitation period, with the devel-opment of post-COVID syndrome, is discussed.
Key words: new coronavirus infection (COVID-19), prevention, treatment, rehabilitation, post-COVID-19 syndrome, nutraceuticals, selenium, zinc, vitamin A, vitamin C, vitamin E, probiotics, rebamipide.
About the Author
Dmitry I. Trukhan 1 , Evgeny L. Davydov 2 , Natalia A. Chusova 31 Omsk State Medical University, Omsk, Russia
2 Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
3 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
References
1. Grinevich V.B., Gubonina I.V., Doshchitsin V.L. et al. Management of patients with comorbidity during novel coronavirus (COVID-19) pan-demic. National Consensus Statement 2020. Cardiovascular Therapy and Prevention. 2020; 19 (4): 2630. DOI: 10.15829/1728-88002020-2630 (in Russian).
2. СSologub T.V., Osinovets O.Iu. Immunomoduliatory v kompleksnoi terapii ORVI: vozmozhnosti primeneniia preparata galavit. Russkii meditsinskii zhurnal. Meditsinskoe obozrenie. 2013; 3 (21): 144–6 (in Russian).
3. Trukhan D.I., Filimonov S.N. Differentsial'nyi diagnoz osnovnykh pul'monologicheskikh simptomov i sindromov. Saint Petersburg: SpetsLit, 2019 (in Russian).
4. Vremennye metodicheskie rekomendatsii “Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19)” versiia 10 (08.02.2021) Minzdrava Rossii. M., 202 (in Russian).
5. Tay MZ, Poh CM, Renia L et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20 (6): 363–
74. DOI: 10.1038/s41577-020-0311-8
6. Трухан Д.И., Тарасова Л.В. Особенности клиники и лечения острых респираторных вирусных инфекций в практике врача-терапевта. Врач. 2014; 8: 44–7 (in Russian).
7. Lytkina I.N., Malyshev N.A. Profilaktika i lechenie grippa i ostrykh respiratornykh virusnykh infektsii sredi epidemiologicheski znachimykh grupp naseleniia. Klinicheskaia infektologiia i parazi-tologiia. 2015; 2 (13): 117–24 (in Russian).
8. Vremennye metodicheskie rekomendatsii “Poriadok provedeniia vaktsi-natsii vzroslogo naseleniia protiv COVID-19”. M., 2021 (in Russian).
9. Trukhan D.I. Kompleksnaia terapiia vospalitel'nykh zabolevanii dykhatel'nykh putei na etape okazaniia pervichnoi mediko-sanitarnoi pomoshchi. Bolezni organov dykhaniia. Pril. k zhurnalu Consilium Medicum. 2015; 1: 44–50 (in Russian).
10. Trukhan D.I., Mazurov A.L., Rechapova L.A. Ostrye respiratornye virusnye infektsii: aktual'nye voprosy diagnostiki, profilaktiki i lecheniia v praktike terapevta. Terapevticheskii arkhiv. 2016; 11: 76–
82. DOI: 10.17116/terarkh2016881176-82 (in Russian).
11. Trukhan D.I., Bagisheva N.V., Mordyk A.V., Nebesnaia E.Iu. Amin-odigidroftalazindion natriia v profilaktike, lechenii i reabilitatsii pat-sientov s zabolevaniiami organov dykhaniia. Consilium Medicum. 2021; 23 (3): 296–303. DOI: 10.26442/20751753.2021.3.200839 (in Russian).
12. Pecora F, Persico F, Argentiero A et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020; 12 (10): 3198. DOI: 10.3390/nu12103198
13. Jayawardena R, Sooriyaarachchi P, Chourdakis M et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14 (4): 367–82. DOI: 10.1016/j.dsx.2020.04.015
14. Galmés S, Serra F, Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients 2020; 12 (9): 2738. DOI: 10.3390/nu12092738
15. Cámara M, Sánchez-Mata MC, Fernández-Ruiz V et al. A Review of the Role of Micronutrients and Bioactive Compounds on Immune Sys-tem Supporting to Fight against the COVID-19 Disease. Foods 2021; 10 (5): 1088. DOI: 10.3390/foods10051088
16. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 2020; 3 (1): 74–92. DOI: 10.1136/bmjnph-2020-000085
17. Shakoor H, Feehan J, Al Dhaheri AS et al. Immune-boosting role of vi-tamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021; 143: 1–9. DOI: 10.1016/j.maturitas.2020.08.003
18. Kumar P, Kumar M, Bedi O et al. Role of vitamins and minerals as im-munity boosters in COVID-19. Inflammopharmacology 2021: 1–16. DOI: 10.1007/s10787-021-00826-7
19. Subedi L, Tchen S, Gaire BP et al. Adjunctive Nutraceutical Therapies for COVID-19. Int J Mol Sci 2021; 22 (4): 1963. DOI: 10.3390/ijms22041963
20. Junaid K, Ejaz H, Abdalla AE et al. Effective Immune Functions of Mi-cronutrients against SARS-CoV-2. Nutrients 2020; 12 (10): 2992. DOI: 10.3390/nu12102992
21. Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) en-hance human immunity against COVID-19 and its new variants? Beni Suef Univ J Basic Appl Sci 2021; 10 (1): 33. DOI: 10.1186/s43088-021-00123-w
22. Alexander J, Tinkov A, Strand TA et al. Early Nutritional Interven-tions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resis-tance Against Progressive COVID-19. Nutrients 2020; 12 (8): 2358. DOI: 10.3390/nu12082358
23. Iddir M, Brito A, Dingeo G et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12 (6): 1562. DOI: 10.3390/nu12061562
24. Clemente-Suárez VJ, Ramos-Campo DJ, Mielgo-Ayuso J et al. Nutri-tion in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021; 13 (6): 1924. DOI: 10.3390/nu13061924
25. Akhtar S, Das JK, Ismail T et al. Nutritional perspectives for the pre-vention and mitigation of COVID-19. Nutr Rev 2021; 79 (3): 289–
300. DOI: 10.1093/nutrit/nuaa063
26. Di Renzo L, Gualtieri P, Pivari F et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med 2020; 18 (1): 415. DOI: 10.1186/s12967-020-02594-4
27. Mrityunjaya M, Pavithra V, Neelam R et al. Immune-Boosting, An-tioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol 2020; 11: 570122. DOI: 10.3389/fimmu.2020.570122
28. Vahid F, Rahmani D. Can an anti-inflammatory diet be effective in preventing or treating viral respiratory diseases? A systematic nar-rative review. Clin Nutr ESPEN 2021; 43: 9–15. DOI: 10.1016/j.clne-sp.2021.04.009
29. Jovic TH, Ali SR, Ibrahim N et al. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020; 12 (9): 2550. DOI: 10.3390/nu12092550
30. Dharmalingam K, Birdi A, Tomo S et al. Trace Elements as Im-munoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem 2021: 1–11. DOI: 10.1007/s12291-021-00961-6
31. de Faria Coelho-Ravagnani C, Corgosinho FC, Sanches FFZ et al. Di-etary recommendations during the COVID-19 pandemic. Nutr Rev 2021; 79 (4): 382–93. DOI: 10.1093/nutrit/nuaa067
32. Tsink, selen i vitamin D. Kak zashchishchat'sia ot COVID-19? Koron-avirus COVID-19: Ofitsial'naia informatsiia o koronaviruse v Rossii na portale – stopkoronavirus.rf. https://xn--80aesfpebagmfblc0a. xn--p1ai/news/20201024-1315.html (in Russian).
33. Moghaddam A, Heller RA, Sun Q et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020; 12 (7): 2098. DOI: 10.3390/nu12072098
34. Bae M, Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules 2020; 25 (22): 5346. DOI: 10.3390/molecules25225346
35. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral in-fection: are there lessons for COVID-19? Br J Nutr 2021; 125 (6): 618–
27. DOI: 10.1017/S0007114520003128
36. Khatiwada S, Subedi A. A Mechanistic Link Between Selenium and Coronavirus Disease 2019 (COVID-19). Curr Nutr Rep 2021; 10 (2): 125–36. DOI: 10.1007/s13668-021-00354-4
37. Tomo S, Saikiran G, Banerjee M, Paul S. Selenium to selenoproteins –role in COVID-19. EXCLI J 2021; 20: 781–91. DOI: 10.17179/ex-cli2021-3530
38. Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-
19) Pandemic Era. Antioxidants (Basel) 2021; 10 (7): 1031. DOI: 10.3390/antiox10071031
39. Im JH, Je YS, Baek J et al. Nutritional status of patients with COVID-
19. Int J Infect Dis 2020; 100: 390–3. DOI: 10.1016/j.ijid.2020.08.018
40. Younesian O, Khodabakhshi B, Abdolahi N et al. Decreased Serum Se-lenium Levels of COVID-19 Patients in Comparison with Healthy In-dividuals. Biol Trace Elem Res 2021: 1–6. DOI: 10.1007/s12011-021-02797-w
41. Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenopro-teins in viral infection with potential relevance to COVID-19. Redox Biol 2020; 37: 101715. DOI: 10.1016/j.redox.2020.101715
42. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143: 109878. DOI: 10.1016/j.mehy.2020.109878
43. Samad N, Sodunke TE, Abubakar AR et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14: 527–50. DOI: 10.2147/JIR.S295377
44. Corrao S, Mallaci Bocchio R, Lo Monaco M et al. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients 2021; 13 (4): 1261. DOI: 10.3390/nu13041261
45. Patel O, Chinni V, El-Khoury J et al. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol 2021; 93 (5): 3261–7.
46. Skalny AV, Rink L, Ajsuvakova OP et al. Zinc and respiratory tract in-fections: Perspectives for COVID-19 (Review). Int J Mol Med 2020; 46 (1): 17–26. DOI: 10.3892/ijmm.2020.4575
47. Jothimani D, Kailasam E, Danielraj S et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis 2020; 100: 343–9. DOI: 10.1016/j.ijid.2020.09.014
48. Wessels I, Rolles B, Rink L. The Potential Impact of Zinc Supplemen-tation on COVID-19. Pathogenesis. Front Immunol 2020; 11: 1712. DOI: 10.3389/fimmu.2020.01712
49. Heller RA, Sun Q, Hackler J et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol 2021; 38: 101764. DOI: 10.1016/j.redox.2020.101764
50. Rahman MT, Idid SZ. Can Zn Be a Critical Element in COVID-19 Treatment? Biol Trace Elem Res 2021; 199 (2): 550–8. DOI: 10.1007/s12011-020-02194-9
51. de Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN 2020; 38: 65–6. DOI: 10.1016/j.clnesp.2020.06.003
52. Pal A, Squitti R, Picozza M, Pawar A et al. Zinc and COVID-19: Basis of Current Clinical Trials. Biol Trace Elem Res 2021; 199 (8): 2882–92. DOI: 10.1007/s12011-020-02437-9.
53. Joachimiak MP. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis 2021; 15 (1): e0008895. DOI: 10.1371/journal.pntd.0008895
54. Раn SY, Zhou J, Gibbons L; Canadian Саnсеr Registries Epidemiology Research Group. Antioxidants and breast cancer risk- a population-based case-control study in Canada. ВМС Cancer 2011; 11: 372. DOI: 10.1186/1471-2407-11-372
55. Cui Z, Liu D, Liu С, Liu G. Serum selenium levels and prostate cancer risk: A MOOSE-compliant meta-analysis. Mediciпe (Вaltimore) 2017; 96 (5): е5944. DOI: 10.1097/MD.0000000000005944
56. Terry PD, Qiп В, Camacho F et al. Supplemental Selenium May De-crease Ovarian Cancer Risk in African-American Women. J Nutr 2017; 147 (4): 621–7. DOI: 10.3945/jn.116.243279
57. Fiorino S, Gallo C, Zippi M et al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res 2020; 32 (10): 2115–31. DOI: 10.1007/s40520-
020- 01669-y
58. Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV-2. Br J Nutr 2021: 1–10. DOI: 10.1017/S0007114521000246
59. Li R, Wu K, Li Y et al. Revealing the targets and mechanisms of vita-min A in the treatment of COVID-19. Aging (Albany NY) 2020; 12–15: 15784–96. DOI: 10.18632/aging.103888
60. Tepasse PR, Vollenberg R, Fobker M et al. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021; 13 (7): 2173. DOI: 10.3390/nu13072173
61. Abioye AI, Bromage S, Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health 2021; 6 (1): e003176. DOI: 10.1136/bmjgh-2020-003176
62. Abobaker A, Alzwi A, Alraied AHA. Overview of the possible role of vi-tamin C in management of COVID-19. Pharmacol Rep 2020; 72 (6): 1517–28. DOI: 10.1007/s43440-020-00176-1
63. Ebrahimzadeh-Attari V, Panahi G, Hebert JR et al. Nutritional approach for increasing public health during pandemic of COVID-19: A compre-hensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect 2021; 11 (2): 119–36. DOI: 10.34172/hpp. 2021.17
64. Tavakol S, Seifalian AM. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol Appl Biochem 2021: 10.1002/bab.2176. DOI: 10.1002/bab.2176
65. Borisov V.V. Microelements selenium and zinc in female and male body: problems and solutions. Consilium Medicum. 2018; 20 (7): 63–8. DOI: 10.26442/2075-1753_2018.7.63-68 (in Russian).
66. [Borisov V.V. Rossiiskaia demografiia, puti uluchsheniia muzhskogo i zhenskogo zdorov'ia v aspekte fertil'nosti. Mnenie urologa i reproduk-tologa. Consilium Medicum. 2019; 21 (7): 10–8. DOI: 10.26442/20751753.2019.7.190425 (in Russian).
67. Trukhan D.I., Viktorova I.A. Nefrologiia. Endokrinologiia. Gema-tologiia. Saint Petersburg: SpetsLit, 2017. www.elibrary.ru/item.asp?id=36478198 (in Russian).
68. Trukhan D. I., Viktorova I.A., Safonov A.D. Bolezni pecheni. Saint Pe-tersburg: SpetsLit, 2019. www.elibrary.ru/item.asp?id=41392560 (in Russian).
69. Trukhan D.I., Viktorova I.A. Bolezni organov dykhaniia. Saint Pe-tersburg: SpetsLit, 2013. www.elibrary.ru/item.asp?id=26002930 (in Russian).
70. Mahluji S, Jalili M, Ostadrahimi A et al. Nutritional management of diabetes mellitus during the pandemic of COVID-19: a comprehensive narrative review. J Diabetes Metab Disord 2021; 20 (1): 1–10. DOI: 10.1007/s40200-021-00784-5
71. Wells JM. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact 2011; 10 (Suppl. 1): S17. DOI: 10.1186/1475-2859-10-S1-S17
72. Trukhan D.I., Viktorova I.A. Korrektsiia narushenii kishechnogo mikrobiotsenoza v aspekte profilaktiki respiratornykh infektsii dykhatel'nykh putei: vozmozhnosti Lactobacillus rhamnosus GG. Gastroenterologiia. Khirurgiia. Intensivnaia terapiia. Consilium Medicum. 2018; 2: 39–44. DOI: 10.26442/26583739.2018.2.180103 (in Russian).
73. Ostrye respiratornye virusnye infektsii v ambulatornoi praktike vracha-pediatra. Posobie dlia vrachei. Ed. N.A. Korovinoi. Moscow: 2004. https://elibrary.ru/item.asp?id=29782362 (in Russian).
74. Surkov A.N. Vozmozhnosti korrektsii i profilaktiki narushenii mikro-biotsenoza kishechnika u chasto boleiushchikh detei. Voprosy sovre-mennoi pediatrii. 2013; 2: 59–65. https://elibrary.ru/item.asp?id= 19006300 (in Russian).
75. Trukhan D.I., Mazurov A.L., Rechapova L.A. Ostrye respiratornye virusnye infektsii: aktual'nye voprosy diagnostiki, profilaktiki i lecheniia v praktike terapevta. Terapevticheskii arkhiv. 2016; 11: 76–
82. DOI: 10.17116/terarkh2016881176-82 (in Russian).
76. Trukhan D.I., Goloshubina V.V. Ostrye respiratornye virusnye infek-tsii v praktike vracha pervogo kontakta: aktual'nye aspekty kliniki, lecheniia i profilaktiki. Spravochnik poliklinicheskogo vracha. 2016; 5: 6–11. https://elibrary.ru/item.asp?id=29074224 (in Russian).
77. Treating infectious diseases in a microbial world: Report of two workshops on novel antimicrobial therapeutics. Washington: Nation-al Academies Press, 2006. www.ncbi.nlm.nih.gov/books/NBK19849/
78. Promising Approaches to the Development of Immunomodulation for the Treatment of Infectious Diseases. Report of a Workshop. www.ncbi.nlm.nih.gov/books/NBK19846/
79. Cong Y, Feng T, Fujihashi K et al. A dominant, coordinated T regula-tory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA, 2009, 106 (46): 19256–61. DOI: 10.1073/ pnas.0812681106
80. Smith PM, Garrett WS. The gut microbiota and mucosal T cells. Front Microbiol 2011; 2: 111. DOI: 10.3389/fmicb.2011.00111
81. Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 2011; 6 (3): 261–74. DOI: 10.1007/s12263-011-0218-x
82. Johnstone J, Meade M, Marshall J et al.; PROSPECT Investigators and the Canadian Critical Care Trials Group. Probiotics: Prevention of Severe Pneumonia and Endotracheal Colonization Trial-PROSPECT: protocol for a feasibility randomized pilot trial. Pilot Feasibility Stud 2015; 1: 19. DOI: 10.1186/s40814-015-0013-3
83. Kalima K, Lehtoranta L He L et al. Probiotics and respiratory and gastrointestinal tract infections in Finnish military conscripts – a randomised placebo-controlled double-blinded study. Benef Microbes 2016; 7 (4): 463–71. DOI: 10.3920/BM2015.0172
84. Tapiovaara L, Kumpu M, Mäkivuokko H et al. Human rhinovirus in experimental infection after peroral Lactobacillus rhamnosus GG consumption, a pilot study. Int Forum Allergy Rhinol 2016; 6 (8): 848–53. DOI: 10.1002/alr.21748
85. Wang B, Hylwka T, Smieja M et al. Probiotics to Prevent Respiratory Infections in Nursing Homes: A Pilot Randomized Controlled Trial. J Am Geriatr Soc 2018; 66 (7): 1346–52. DOI: 10.1111/jgs.15396
86. Laursen RP, Hojsak I.Probiotics for respiratory tract infections in children attending day care centers-a systematic review. Eur J Pedi-atr 2018; 177 (7): 979–94. DOI: 10.1007/s00431-018-3167-1
87. Akour A. Probiotics and COVID-19: is there any link? Lett Appl Micro-biol 2020; 71 (3): 229–34. DOI: 10.1111/lam.13334
88. Bottari B, Castellone V, Neviani E. Probiotics and Covid-19. Int J Food Sci Nutr 2021; 72 (3): 293–9. DOI: 10.1080/09637486.2020.1807475
89. Parisi GF, Carota G, Castruccio Castracani C et al. Nutraceuticals in the Prevention of Viral Infections, including COVID-19, among the Pe-diatric Population: A Review of the Literature. Int J Mol Sci 2021; 22 (5): 2465. DOI: 10.3390/ijms22052465
90. Peng J, Zhang M, Yao G et al. Probiotics as Adjunctive Treatment for Patients Contracted COVID-19: Current Understanding and Future Needs. Front Nutr 2021; 8: 669808. DOI: 10.3389/fnut.2021.669808
91. Grinevich V.B., Kravchuk Yu.A., Tkachenko E.I. et al. Features of management of patients with gastroenterological pathology in the conditions of the COVID-19 pandemic. Experimental and Clinical Gastroenterology. 2020; 176 (4): 3–18. DOI: 10.31146/1682-8658-ecg-176-4-3-18 [(in Russian).
92. Simanenkov V.I., Maev I.V., Tkacheva O.N. et al. Syndrome of in-creased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention. 2021; 20 (1): 2758. DOI: 10.15829/1728-8800-2021-2758 (in Russian).
93. Wen X, Chen X, Zhou X. Rebamipide inhibited expression of TLR4 and TNF-alpha release in pulmonary epithelial cell line A549 induced by lipopolysaccharide. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2009; 34 (5): 457–60. https://pubmed.ncbi.nlm.nih.gov/19483297/
94. Yasuda T, Chiba H, Satomi T et al. Preventive effect of rebamipide gargle on chemoradiotherpy-induced oral mucositis in patients with oral cancer: a pilot study. J Oral Maxillofac Res 2012; 2 (4): e3. DOI: 10.5037/jomr.2011.2403
95. Akagi S, Fujiwara T, Nishida M et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapyin-duced oral mucositis in patients with head and neck cancer: a system-atic review and meta-analysis. J Pharm Health Care Sci 2019; 5: 16. DOI: 10.1186/s40780-019-0146-2
96. Ye L, Yang Z, Liu J et al. Digestive system manifestations and clinical significance of coronavirus disease 2019: A systematic literature re-view. J Gastroenterol Hepatol 2021; 36 (6): 1414–22. DOI: 10.1111/jgh.15323
97. Blanco-Melo D, Nilsson-Payant BE, Liu WC et al. Imbalanced host re-sponse to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181 (5): 1036–1045.e9. DOI: 10.1016/j.cell.2020.04.026
98. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ 2021; 373: n967. DOI: 10.1136/bmj.n967
99. Tsvetov V.M., Kiselev Iu.Iu., Mirzaev K.B., Sychev D.A. Vozmozhnost' primeneniia preparata, soderzhashchego aminodigidroftalazindion natriia, u patsientov s COVID-19, v tom chisle dlia terapii “tsitoki-novogo shtorma”. Kachestvennaia klinicheskaia praktika. 2020; S4: 4–7. DOI: 10.37489/2588-0519-2020-S4-4-7 (in Russian).
100. Lotfi F, Akbarzadeh-Khiavi M, Lotfi Z et al. Micronutrient therapy and effective immune response: a promising approach for manage-ment of COVID-19. Infection 2021: 1–15. DOI: 10.1007/s15010-021-01644-3
101. Notz Q, Herrmann J, Schlesinger T et al. Clinical Significance of Mi-cronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients 2021; 13 (6): 2113. DOI: 10.3390/nu13062113
102. Maxwell E. Living with Covid-19. A dynamic review of the evidence around ongoing Covid19 symptoms (often called Long Covid). NIHR CED 30 September 2020. NIHR Evidence – Living with Covid-19 –Informative and accessible health and care research. https://evi-dence.nihr.ac.uk/themedreview/living-with-covid19/
103. Callard F, Perego E. How and why patients made Long Covid. Soc Sci Med 2021; 268: 113426. DOI: 10.1016/j.socscimed.2020.113426
104. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med 2021; 9 (2): 29. DOI: 10.1016/S2213-2600(21)00031-X
105. Dani M, Dirksen A, Taraborrelli P et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond) 2021; 21 (1): e63–e67. DOI: 10.7861/clinmed.2020-0896
106. Oronsky B, Larson C, Hammond TC et al. A review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol 2021: 1–
9. DOI: 10.1007/s12016-021-08848-3
107. Ayoubkhani D, Khunti K, Nafilyan V et al. Post-covid syndrome in individuals admitted to hospital with COVID-19: retrospective co-hort study. BMJ 2021; 372: n693. DOI: 10.1136/bmj.n693
108. Зайцев А.А., Савушкина О.И., Черняк А.В. и др. Клинико-функ-циональная характеристика пациентов, перенесших новую коронавирусную инфекцию COVID-19. Практическая пульмо-нология. 2020; 1: 78–81.
[Zaitsev A.A., Savushkina O.I., Cherniak A.V. et al. Kliniko-funkt-sional'naia kharakteristika patsientov, perenesshikh novuiu koron-avirusnuiu infektsiiu COVID-19. Prakticheskaia pul'monologiia. 2020; 1: 78–81 (in Russian).]
109. Vishnupriya M, Naveenkumar M, Manjima K et al. Post-COVID pul-monary fibrosis: therapeutic efficacy using with mesenchymal stem cells – How the lung heals. Eur Rev Med Pharmacol Sci 2021; 25 (6): 2748–51. DOI: 10.26355/eurrev_202103_25438
110. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021. DOI: 10.1038/s41586-
021- 03553-9
111. Sher L. Post-COVID syndrome and suicide risk.QJM. 2021 Jan 24:hcab007. DOI: 10.1093/qjmed/hcab007
112. Vishnupriya M, Naveenkumar M, Manjima K et al. Post-COVID pul-monary fibrosis: therapeutic efficacy using with mesenchymal stem cells – How the lung heals. Eur Rev Med Pharmacol Sci 2021; 25 (6): 2748–51. DOI: 10.26355/eurrev_202103_25438
129. Türktaş H, Oğuzülgen İK. Post-COVID-19 pulmonary sequla: longterm follow up and management.Tuberk Toraks 2020; 68 (4): 419–29. DOI: 10.5578/tt.70353
130. Pavli A, Theodoridou M, Maltezou HC. Post-COVID syndrome: Inci-dence, clinical spectrum, and challenges for primary healthcare professionals. Arch Med Res 2021: S0188-4409 (21) 00081–3. DOI: 10.1016/j.arcmed.2021.03.010
131. Saeed S, Tadic M, Larsen TH et al. Grassi G, Mancia G. Coronavirus disease 2019 and cardiovascular complications: focused clinical re-view. J Hypertens 2021; 39 (7): 1282–1292. DOI: 10.1097/HJH.0000000000002819
132. Carfì A, Bernabei R, Landi F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020; 324 (6): 603–5. DOI: 10.1001/ja-ma.2020.12603
133. Huang C, Huang L, Wang Y et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397: 220–32. DOI: 10.1016/S0140-6736(20)32656-8
134. Townsend L, Dowds J, O'Brien K et al. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc 2021. DOI: 10.1513/Annal-sATS.202009-1175OC
135. Butters D, Whitehouse M. COVID-19 and nutriceutical therapies, es-pecially using zinc to supplement antimicrobials. Inflammopharma-cology 2021; 29 (1): 101–5. DOI: 10.1007/s10787-020-00774-8
136. Vollbracht C, Kraft K. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a System-atic Review of IV Vitamin C on Fatigue. Nutrients 2021; 13 (4): 1154. DOI: 10.3390/nu13041154
For citation:Trukhan D.I., Davydov E.L., Chusova N.A. Nutriceutics in prevention, treatment and at the stage of rehabilitation after new coronavirus infection (COVID-19). Clinical review for general practice. 2021; 7: 21–34. DOI: 10.47407/kr2021.2.7.00085
All accepted articles publish licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.