Clinical review for general practice

ISSN (Print) 2713-2552
ISSN (Online) 2782-5671
  • Home
  • about
  • archives
  • contacts
left
FULLSCREEN > Archive > 2023 > Vol 4, №4 (2023) > Pleiotropic effects of ipragliflozin

Pleiotropic effects of ipragliflozin

Nina A. Petunina , Irina A. Kuzina , Milena E. Telnova , Ekaterina V. Goncharova , Narine S. Martirosyan , Anna O. Shchetinina

For citation:


  • Abstract
  • About the Author
  • References

Abstract

Type 2 diabetes mellitus and its complications is a serious threat to the health and lives of the world's population. Among the causes of death in type 2 diabetes mellitus are both cardiovascular and non-vascular causes. Sodium-glucose cotransporter type 2 inhibitors are well-established drugs for the treatment of type 2 diabetes mellitus with various hemodynamic and metabolic effects. The range of pleiotropic effects is quite wide and includes an improvement in the lipid profile, a decrease in insulin resistance and body weight, a decrease in the risk of adverse cardiovascular outcomes, nephroprotection, as well as a positive effect on the course of non-alcoholic fatty liver disease. Recent data also testify to the antiproliferative effects of this group of drugs. Ipragliflozin is one of the representatives of the class of sodium-glucose cotransporter type 2 inhibitors, which is effective in terms of glycemic control in monotherapy and in combination with other hypoglycemic drugs. The BRIGHTEN and SPOTLIGHT studies have shown an association of ipragliflozin with increased HDL and lower triglycerides. Ipragliflozin contributes to the reduction of insulin resistance and body weight, as confirmed by the PRIME-V and ILLUMINATE studies. In some cases, regression of LV hypertrophy and a decrease of NT-proBNP were shown when taking ipragliflozin. The effect on the course of non-alcoholic fatty liver disease and the reduction of fibrosis, confirmed by liver biopsy, in patients with type 2 diabetes is the advantage of ipragliflozin. There is also evidence of the antiproliferative efficacy of ipragliflozin in various types of malignant neoplasms. The review highlights the effectiveness of ipragliflozin in relation to dyslipidemia, insulin resistance, cardiovascular outcomes in patients with type 2 diabetes mellitus, presents data on the positive effect of the drug on the course of NAFLD and type 2 diabetes, and also considers possible mechanisms of the antiproliferative effect of the drug. 
Key words: type 2 diabetes mellitus; ipragliflozin; dyslipidemia; hyperuricemia; insulin resistance; heart failure; NASH; cancer

About the Author

Nina A. Petunina 1 , Irina A. Kuzina 1 , Milena E. Telnova 1 , Ekaterina V. Goncharova 1 , Narine S. Martirosyan 1 , Anna O. Shchetinina 1

1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

References

1. Gregg EW, Cheng YJ, Srinivasan M et al. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: An epidemiological analysis of linked national survey and vital statistics data. Lancet 2018; 391: 2430–40. DOI: 10.1016/S0140- 6736(18)30314-3 
2. Pearson-Stuttard J, Bennett J, Cheng YJ et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: An epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 2021; 9: 165–73. DOI: 10.1016/S2213-8587(20)30431-9 
3. Дедов И.И., Шестакова М.В., Викулова О.К. и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021; 24 (3): 204–21. [Dedov I.I., Shestakova M.V., Vikulova O.K. et al. Epidemiologicheskie harakteristiki saharnogo diabeta v Rossijskoj Federacii: kliniko-statisticheskij analiz po dannym registra saharnogo diabeta na 01.01.2021. Saharnyj diabet. 2021; 24 (3): 204–21 (in Russian).] 
4. Tsunekawa S, Kamiya H, Nakamura J. Different trends in causes of death in patients with diabetes between Japan and the USA. J Diabetes Investig 2019; 10: 571–3. DOI: 10.1111/jdi.12962 
5. Scherübl H. Typ 2 Diabetes-mellitus und Krebsrisiko [Type 2 diabetes and cancer risk]. Dtsch Med Wochenschr 2021; 146 (18): 1218–25. German. DOI: 10.1055/a-1529-4521 
6. Scheen AJ. Sodium–glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2020; 16: 556–77. DOI: 10.1038/s41574-020-0392-2 
7. Heerspink HJ, Perkins BA, Fitchett DH et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016; 134: 752–72. 
8. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323–34. DOI: 10.1056/NEJMoa1515920 
9. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377: 644–57. DOI: 10.1056/NEJMoa1611925 
10. ZelnikerTA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-Art review. J Am Coll Cardiol 2020; 75: 422–34. 
11. Inzucchi SE, Bergenstal RM, Buse JB et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015; 58 (3): 429–42. 
12. NICE Guidelines. Type 2 diabetes in adults: Management. 2019. URL: https: //www.nice.org.uk/guidance/ng28 
13. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes, pre-diabete s, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41: 255–323. 
14. Draznin B, Aroda VR, Bakris G et al. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2022. Diabetes Care 022; 45: S125–S143. 
15. Elgebaly A, Abdelazeim N, Abdelazeim B et al. Tolerability and efficacy of ipragliflozin in the management of inadequately controlled type 2 diabetes mellitus: a systematic review and meta-analysis. Experimental Clinl Endocrinol Diabetes 2021; 129 (1): 56–72. DOI: 10.1055/a-0579-7860 
16. Kashiwagi A, Takahashi H, Ishikawa H et al. A randomized, doubleblind, placebo-controlled study on long-term ecacy and safety of ipragliozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab 2015; 17 (2): 152–60. DOI: 10.1111/dom.12403 
17. Nakamura I, Maegawa H, Tobe K et al. Safety and efficacy of ipragliflozin in Japanese patients with type 2 diabetes in realworld clinical practice: interim results of the STELLA-LONG TERM postmarketing surveillance study. Expert Opinion on Pharmacotherapy 2018; 19 (3): 189–201. DOI: 10.1080/14656566.2017.1408792
18. Kashiwagi A, Kazuta K, Goto K et al. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabet Obesity Metab 2015; 17 (3): 304–8. DOI: 10.1111/dom.12331 
19. Shestakova MV, Wilding JPH, Wilpshaar W et al. A phase 3 randomized placebo-controlled trial to assess the efficacy and safety of ipragliflozin as an add-on therapy to metformin in Russian patients with inadequately controlled type 2 diabetes mellitus. Diabet Res Clin Pract 2018; 146: 240–50. DOI: 10.1016/j.diabres. 2018.10.018 
20. Ishihara H, Yamaguchi S, Nakao I et al. Efficacy and safety of ipragliflozin as add-on therapy to insulin in Japanese patients with type 2 diabetes mellitus (IOLITE): a multi-centre, randomized, placebo-controlled, double-blind study. Diabet Obesity Metab 2016; 18 (12): 1207–16. DOI: 10.1111/dom.12745 
21. Kashiwagi A, Kazuta K, Takinami Y et al. Ipragliflozin improves glycemic control in Japanese patients with type 2 diabetes mellitus: the BRIGHTEN study. Diabetol Int 2015; 6: 8–18. 
22. Bando Y, Tohyama H, Aoki K et al. Ipragliflozin lowers small, dense low-density lipoprotein cholesterol levels in Japanese patients with type 2 diabetes mellitus. J Clin Transl Endocrinol 2016; 6: 1–7. 
23. Kashiwagi A, Shiga T, Akiyama N et al. Efficacy and safety of ipragliflozin as an add-on to pioglitazone in Japanese patients with inadequately controlled type 2 diabetes: a randomized, double-blind, placebo-controlled study (the SPOTLIGHT study). Diabetol Int 2015; 6: 104–16. DOI: 10.1007/s13340-014-0182-y 
24. Kashiwagi A, Sakatani T, Nakamura I et al. Improved cardiometabolic risk factors in Japanese patients with type 2 diabetes treated with ipragliflozin: a pooled analysis of six randomized, placebo-controlled trials. Endocr J 2018; 65 (7): 693–705. DOI: 10.1507/endocrj.EJ17-0491 
25. Kolterman OG, Gray RS, Griffin J et al. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest 1981; 68: 957–969. DOI: 10.1172/JCI110 
26. Bollag GE, Roth RA, Beaudoin J et al. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci 1986; 83: 5822–4. DOI: 10.1073/pnas.83.16.5822 
27. Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest 1988; 82: 1398–406. DOI: 10.1172/JCI113744 
28. Koshizaka M, Ishikawa K, Ishibashi R et al. Comparing the effects of ipragliflozin versus metformin on visceral fat reduction and metabolic dysfunction in Japanese patients with type 2 diabetes treated with sitagliptin: A prospective, multicentre, open-label, blinded-endpoint, randomized controlled study (PRIME-V study). Diabetes Obes Metab 2019; 21 (8): 1990–5. DOI: 10.1111/dom.13750 
29. Alkabbani W, Gamble JM. Profile of Ipragliflozin, an Oral SGLT-2 Inhibitor for the Treatment of Type 2 Diabetes: The Evidence to Date. Drug Des Devel Ther 2021; 15: 3057–69. DOI: 10.2147/DDDT.S281602 
30. Rangaswami J, Bhalla V, de Boer IH et al. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association. Circulation 2020; 142 (17): e265–e286. DOI: 10.1161/CIR.0000000000000920 
31. Packer M, Anker SD, Butler J et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383 (15): 1413–24. DOI: 10.1056/NEJMoa2022190 
32. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381 (21): 1995–2008. DOI: 10.1056/NEJMoa1911303 
33. CVD-REAL Investigators and Study Group; Kosiborod M, Lam CSP, Kohsaka S et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol 2018; 71 (23): 2628–39. DOI: 10.1016/j.jacc.2018.03.009 
34. Suzuki Y, Kaneko H, Okada A et al. Comparison of cardiovascular outcomes between SGLT2 inhibitors in diabetes mellitus. Cardiovasc Diabetol 2022; 21: 67. DOI: 10.1186/s12933-022-01508-6 
35. Akasaka H, Sugimoto K, Shintani A et al. Effects of ipragliflozin on left ventricular diastolic function in patients with type 2 diabetes and heart failure with preserved ejection fraction: The EXCEED randomized controlled multicenter study. Geriatr Gerontol Int. 2022; 22 (4): 298–304. DOI: 10.1111/ggi.14363 
36. Gomes CPC, Schroen B, Kuster GM et al. RNAs in heart failure. Circulation 2020; 141: 313–28. 
37. Wehbe N, Nasser SA, Pintus G et al. MicroRNAs in cardiac hypertrophy. Int. J. Mol. Sci. 2019; 20: 4714. 
38. Takasu T. The Role of SGLT2 Inhibitor Ipragliflozin on Cardiac Hypertrophy and microRNA Expression Profiles in a Non-diabetic Rat Model of Cardiomyopathy. Biol Pharm Bull 2022; 45 (9): 1321–31. DOI: 10.1248/bpb.b22-00289 
39. Younossi Z, Tacke F, Arrese M et al. Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology 2019; 69: 2672–82. 
40. Non-alcoholic Fatty Liver Disease Study Group, Lonardo A, Bellentani S, Argo CK et al. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dig Liver Dis 2015; 47: 997– 1006. DOI: 10.1016/j.dld.2015.08.004 
41. Younossi ZM. Non-alcoholic fatty liver disease – A global public health perspective. J Hepatol 2019; 70: 531–44. DOI: 10.1016/j.jhep.2018.10.033 
42. Mantovani A, Byrne CD, Scorletti E et al. Efficacy and safety of antihyperglycaemic drugs in patients with non-alcoholic fatty liver disease with or without diabetes: An updated systematic review of randomized controlled trials. Diabetes Metab 2020. DOI: 10.1016/j.diabet.2019.12.007 
43. Dougherty JA, Guirguis E, Thornby KA. A systematic review of newer antidiabetic agents in the treatment of nonalcoholic fatty liver disease. Ann Pharmacother 2021; 55: 65–79. DOI: 10.1177/1060028020935105 
44. Mantovani A, Petracca G, Csermely A et al. Sodium-glucose cotransporter-2 inhibitors for treatment of nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Metabolites 2020; 11 (1): 22. DOI: 10.3390/metabo11010022 
45. Tobe K, Maegawa H, Nakamura I, Uno S. Effect of ipragliflozin on liver function in Japanese type 2 diabetes mellitus patients: subgroup analysis of a 3-year post-marketing surveillance study (STELLALONG TERM). Endocr J 2021. DOI: 10.1507/endocrj.EJ20-0765 
46. Angulo P, Hui JM, Marchesini G et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007; 45: 846–54. 
47. Dulai PS, Singh S, Patel J et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 2017; 65: 1557–65. 
48. Takahashi H, Kessoku T, Kawanaka M et al. Ipragliflozin Improves the Hepatic Outcomes of Patients With Diabetes with NAFLD. Hepatol Commun 2022; 6 (1): 120–32. DOI: 10.1002/hep4.1696 
49. Hosokawa K, Takata T, Sugihara T et al. Ipragliflozin ameliorates endoplasmic reticulum stress and apoptosis through preventing ectopic lipid deposition in renal tubules. Int J Mol Sci 2019; 21: 190. 
50. Bessho R, Takiyama Y, Takiyama T et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 2019; 9: 14754. 
51. Nelson JE, Wilson L, Brunt EM et al. Nonalcoholic Steatohepatitis Clinical Research Network. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 2011; 53: 448–57. 


For citation:Petunina N.A., Kuzina I.A., Telnova M.E. et al. Pleiotropic effects of ipragliflozin. Clinical review for general practice. 2023; 4 (4): 20–26. DOI: 10.47407/kr2023.4.4.00252


All accepted articles publish licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

  • About
  • Editorial board
  • Ethics
  • For authors
  • Author fees
  • Peer review
  • Contacts

oa
crossref
анри


  Indexing

doaj
elibrary

Address of the Editorial Office:

127055, Moscow, s/m 37

Correspondence address:

115054, Moscow, Zhukov passage, 19, fl. 2, room XI


Managing Editor:

+7 (495) 926-29-83

id@con-med.ru