Elmaz Z. Kayalieva , Sevilya R. Khalilova , Vitaliy B. Kaliberdenko
Abstract
The article discusses current ideas about the pathogenesis, risk factors, and new methods of diagnosis and treatment of diabetic retinopathy. This disease is a specific microvascular ocular complication of diabetes mellitus and is part of the group of ischemic retinopathies, which are characterized by a significant violation of capillary perfusion, the development of intraocular newly formed vessels and retinal edema. Statistics show that almost 366 million people in the world suffer from diabetes mellitus (IDF Atlas, 2011). According to forecasts, this number is expected to double by 2030, and this global growth will have a huge impact on the prevalence of diabetic retinopathy. Over the past decade, advances in medical technology and the development of new treatment methods have significantly improved the diagnosis and treatment of patients, but nevertheless, diabetic macular edema and proliferative diabetic retinopathy remain the leading causes of vision loss.
Keywords: diabetic retinopathy, diabetes mellitus, hyperglycemia, hemato-retinal barrier, VEGF, cytokines, chemokines, angiopoietin-2, panretinal photocoagulation.
Keywords: diabetic retinopathy, diabetes mellitus, hyperglycemia, hemato-retinal barrier, VEGF, cytokines, chemokines, angiopoietin-2, panretinal photocoagulation.
About the Author
Elmaz Z. Kayalieva 1 , Sevilya R. Khalilova 1 , Vitaliy B. Kaliberdenko 11 Vernadsky Crimean Federal University, Simferopol, Russia
References
1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;(87):4-14.
2. Fenwick E, Rees G, Pesudovs K et al. Social and emotional impact of diabetic retinopathy: a review. Clin Experim Ophthalmol 2012;(40):
27-38.
3. Klein R, Klein BE, Moss SE et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. X. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch Ophthalmol 1989;(107):244-9.
4. Antonetti DA, Barber AJ, Hollinger LA et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999;(274):23463-7.
5. Powell ED, Field RA. Diabetic retinopathy and rheumatoid arthritis. Lancet 1964;(2):17-8.
6. Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol 1997;(151):707-14.
7. Rangasamy S, McGuire PG, Das A. Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 2012;19(1):52-9.
8. Sang DN, D’Amore PA. Is blockade of vascular endothelial growth factor beneficial for all types of diabetic retinopathy? Diabetologia 2008;(51):1570-3.
9. Meleth AD, Agrón E, Chan CC et al. Serum inflammatory markers in diabetic retinopathy. Invest Ophthalmol Vis Sci 2005;(46):4295-301.
10. Suzuki Y, Nakazawa M, Suzuki K et al. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 2011;(55):256-63.
11. Liu J, Shi B, He S et al. Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis 2010;(16):2931-8.
12. Funk M, Schmidinger G, Maar N et al. Angiogenic and inflammatory markers in the intraocular fluid of eyes with diabetic macular edema and influence of therapy with bevacizumab. Retina 2010;(30):1412-9.
13. Katakami N, Matsuhisa M, Kaneto H et al. Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism as a potential risk factor for diabetic retinopathy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 2010;(89):e9-12.
14. Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991;(139):81-100.
15. Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 2008;(30):65-84.
16. Arden GB. The absence of diabetic retinopathy in patients with retinitis pigmentosa: implications for pathophysiology and possible treatment. Br J Ophthalmol 2001;(85):366-70.
17. Patel JI, Hykin PG, Gregor ZJ et al. Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol 2005;(89):480-3.
18. Rangasamy S, Srinivasan R, Maestas J et al. A potential role for angiopoietin-2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci 2011;(52):3784-91.
19. Fiedler U, Reiss Y, Scharpfenecker M et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006;(12):235-9.
20. Klein R, Klein BEK. Blood pressure control and diabetic retinopathy. British Journal of Ophthalmology 2002;86(4):365-7.
21. Matthews DR, Stratton IM, Aldington SJ et al. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Archives of Ophthalmology 2004;122(11):1631-40.
22. Simonson DC. Etiology and prevalence of hypertension in diabetic patients. Diabetes Care 1988;11(10):821-7.
23. Mancia G. The association of hypertension and diabetes: prevalence, cardiovascular risk and protection by blood pressure reduction. Acta Diabetologica 2005;42(Suppl.1):S17-S25.
24. Patel V, Rassam S, Newsom R et al. Retinal blood flow in diabetic retinopathy. British Medical Journal 1992;305(6855):678-83.
25. Kohner EM. The retinal blood flow in diabetes. Diabete et Metabolisme 1993;19(5):401-4.
26. Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. International Journal of Biochemistry and Cell Biology 2006;38(5-6):752-65.
27. Pescosolido N, Campagna O, Barbato A. Diabetic retinopathy and pregnancy. Int Ophthalmol 2014;(34):989-97.
28. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation 1961;(24):82-6.
29. Kernt M, Hadi I, Pinter F et al. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography. Diabetes Care 2012;(35):2459-63.
30. Silva PS, Cavallerano JD, Sun JK et al. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. Am J Ophthalmol 2012;(154):549-559.e2.
31. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.
N Engl J Med 1993;329(14):977-86.
32. Diabetes Control and Complications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 1995;(102):647-61.
33. Stratton IM, Kohner EM, Aldington SJ et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 2001;(44):156-63.
34. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;(329):977-86.
35. King P, Peacock I, Donnelly R. The UK Prospective Diabetes Study (UKPDS): clinical and therapeutic implications for Type 2 diabetes. Br J Clin Pharmacol 1999;(48):643-8.
36. The ACCORD, Study Group ACCORD, Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 2010;(363):233-44.
37. Benarous R, Sasongko MB, Qureshi S et al. Differential association of serum lipids with diabetic retinopathy and diabetic macular edema. Invest Ophthalmol Vis Sci 2011;(52):7464-9.
38. Keech AC, Mitchell P, Summanen PA et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007;(370):1687-97.
39. Brown DM, Nguyen QD, Marcus DM et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013;(120):2013-22.
40. Diabetic Retinopathy Clinical Research Network. Elman MJ, Aiello LP, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010;(117):1064.e35-1077.e35.
41. Diabetic Retinopathy Clinical Research Network. Elman MJ, Qin H, et al. Intra-vitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology 2012;(119):2312-8.
42. Do DV, Nguyen QD, Khwaja AA et al. Ranibizumab for Edema of the Macula in Diabetes study: 3-year outcomes and the need for prolonged frequent treatment. JAMA Ophthalmol 2013;(131):139-45.
43. Elman MJ, Bressler NM, Qin H et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011;(118): 609-14.
44. Mitchell P, Bandello F, Schmidt-Erfurth U et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011;(118): 615-25.
45. Rajendram R, Fraser-Bell S, Kaines A et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol 2012;(130):972-9.
46. Ahn J, Woo SJ, Chung H, Park KH. The effect of adjunctive intravitreal bevacizumab for preventing postvitrectomy hemorrhage in proliferative diabetic retinopathy. Ophthalmology 2011;(118):2218-26.
47. Moradi A, Sepah YJ, Sadiq MA et al. Vascular endothelial growth factor Trap-Eye (aflibercept) for the management of diabetic macular edema. World J Diabetes 2013;(4):303-9.
48. Gardner TW, Antonetti DA, Barber AJ et al. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 2002;47(Suppl.2):S253-S262.
49. Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2008;(115): 1447-9;1449.e1–1449.e10.
50. Bressler SB, Qin H, Melia M et al. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;(131):1033-40.
51. Campochiaro P, Brown DM, Pearson A et al, FAME Study Group. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 2012;(110):2125-32.
52. Cunha-Vaz J, Ashton P, Iezzi R et al, FAME Study Group. Sustained delivery fluocinolone acetonide vitreous implants: long-term benefit in patients with chronic diabetic macular edema. Ophthalmology 2014;(119):2125-32.
53. Rubio R. Long-acting anti-VEGF delivery: How close are we? Presented at the World Ophthalmology Congress, Tokyo, Japan, 2–6 April 2014.
54. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology 1981;(88):583-600.
55. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA 2007;(298):902-16.
56. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1985;(103):1796-806.
57. Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina 2007;(27):816-24.
58. Al-Hussainy S, Dodson PM, Gibson JM. Pain response and follow-up of patients undergoing panretinal laser photocoagulation with reduced exposure times. Eye 2008;(22):96-9.
59. Muqit MM, Young LB, McKenzie R et al. Pilot randomised clinical trial of Pascal TargETEd Retinal versus variable fluence PANretinal 20 ms laser in diabetic retinopathy: PETER PAN Study. Br J Ophthalmol 2013;(97):220-7.
60. Blankenship GW. Fifteen-year argon laser and xenon photocoagulation visual results of Bascom Palmer Eye Institute's patients participating in the Diabetic Retinopathy Study. Trans Am Ophthalmol Soc 1990;(88):179-85; discussion 85-9.
For citation:Kayalieva E.Z., Khalilova S.R., Kaliberdenko V.B. Modern aspects of the pathogenesis, diagnosis and treatment of diabetic retinopathy. Clinical review for general practice. 2024; 5 (4): 15–22 (In Russ.). DOI: 10.47407/kr2024.5.4.00415
All accepted articles publish licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.