Dmitry I. Trukhan , Inna V. Druk , Inna A. Viktorova
Abstract
Diseases of the thyroid gland occupy one of the central places in clinical endocrinology. The main components for the synthesis of thyroid hormones are iodine and the amino acid tyrosine. Studies conducted in the 21st century indicate a certain effect on the metabolism and function of the thyroid gland and other microelements and vitamins. We searched the PubMed and Scopus information databases for publications devoted to the study of the influence of trace elements selenium, zinc, vitamins A, C, E on the physiology and pathology of the thyroid gland, including sources up to 29.02.2024. Adequate intake of selenium, zinc, along with two other important microelements (iodine and iron), as well as vitamins A, C, E, contributes to normal metabolism of the thyroid gland. Maintaining a physiological balance of micronutrients and vitamins through a sensible diet or taking nutraceuticals is essential to preventing thyroid disease and maintaining overall health. Basal analysis of microelements and vitamins seems appropriate for better selection of patients in need of replacement therapy using nutraceuticals
Keywords: thyroid gland, iodine, selenium, zinc, vitamin A, beta-carotene, vitamin C, vitamin E, diffuse toxic goiter, autoimmune thyroiditis, hypothyroidism, thyroid cancer.
Keywords: thyroid gland, iodine, selenium, zinc, vitamin A, beta-carotene, vitamin C, vitamin E, diffuse toxic goiter, autoimmune thyroiditis, hypothyroidism, thyroid cancer.
About the Author
Dmitry I. Trukhan 1 , Inna V. Druk 1 , Inna A. Viktorova 11 Omsk State Medical University, Omsk, Russia
References
1. Трухан Д.И., Викторова И.А. Нефрология. Эндокринология. Гематология. Учеб. пособие. СПб.: СпецЛит, 2023. Режим доступа: https://www.elibrary.ru/item.asp?id=54271252
Trukhan D.I., Viktorova I.A. Nephrology. Endocrinology. Hematology. Textbook allowance. Saint Petersburg: SpetsLit, 2023. Available at: https://www.elibrary.ru/item.asp?id=54271252 (in Russian).
2. Трухан Д.И., Филимонов С.Н., Багишева Н.В. Клиника, диагностика и лечение основных гематологических и эндокринных заболеваний. Новокузнецк: Полиграфист, 2021. Режим доступа: https://www.elibrary.ru/item.asp?id=45609234
Trukhan D.I., Filimonov S.N., Bagisheva N.V. Clinic, diagnosis and treatment of major hematological and endocrine diseases. Novokuznetsk: Polygraphist, 2021. Available at: https://www.elibrary.ru/item. asp?id=45609234 (in Russian).
3. Трухан Д.И., Викторова И.А. Нефрология. Эндокринология. Гематология. Учеб. пособие. СПб.: СпецЛит, 2017. Режим доступа: https://www.elibrary.ru/item.asp?id=36478198
Trukhan D.I., Viktorova I.A. Nephrology. Endocrinology. Hematology. Textbook allowance. Saint Petersburg: SpetsLit, 2017. Available at: https://www.elibrary.ru/item.asp?id=36478198 (in Russian).
4. Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 2022;11(2):251. DOI: 10.3390/antiox11020251
5. Winther KH, Rayman MP, Bonnema SJ, Hegedus L. Selenium in thyroid disorders – essential knowledge for clinicians. Nat Rev Endocrinol 2020;16(3):165-76. DOI: 10.1038/s41574-019-0311-6
6. GB Health Watch. Selenium. Available at: https://www.gbhealthwatch.com/Nutrient-Selenium-Overview.php (accessed on 2 March 2024).
7. Benvenga S, Feldt-Rasmussen U, Bonofiglio D, Asamoah E. Nutraceutical Supplements in the Thyroid Setting: Health Benefits beyond Basic Nutrition. Nutrients 2019;11(9):2214. DOI: 10.3390/nu11092214
8. Balázs C, Rácz K. The role of selenium in endocrine system diseases. Orv Hetil 2013;154(41):1628-35. DOI: 10.1556/OH.2013.29723
9. Gorini F, Sabatino L, Pingitore A, Vassalle C. Selenium: An Element of Life Essential for Thyroid Function. Molecules 2021;26(23):7084. DOI: 10.3390/molecules26237084
10. Beckett GJ, Arthur JR. Selenium and endocrine systems. J Endocrinol 2005;184(3):455-65. DOI: 10.1677/joe.1.05971
11. Köhrle J. Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci 2023;24(4):3393. DOI: 10.3390/ijms24043393
12. Kohrle J, Jakob F, Contempre B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev 2005;26(7):944-84. DOI: 10.1210/er.2001-0034
13. Brauer VF, Schweizer U, Kohrle J, Paschke R. Selenium and goiter prevalence in borderline iodine sufficiency. Eur J Endocrinol 2006;155(6):807-12. DOI: 10.1530/eje.1.02302
14. Bulow Pedersen I, Knudsen N, Carle A et al. Serum selenium is low in newly diagnosed graves’ disease: a population-based study. Clin Endocrinol (Oxf) 2013;79(4):584-90. DOI: 10.1111/cen.12185
15. Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes 2013;20(5):441-8. DOI: 10.1097/01.med.0000433066.
24541.88
16. Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf) 2013;78(2):155-64. DOI: 10.1111/cen.12066
17. Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):392-401. DOI: 10.1097/MED.0000000000000190
18. Liu Y, Huang H, Zeng J, Sun C. Thyroid volume, goiter prevalence, and selenium levels in an iodine-sufficient area: A cross-sectional study. BMC Public Health 2013;13:1153. DOI: 10.1186/1471-2458-13-1153
19. Zhou Q, Xue S, Zhang L, Chen G. Trace elements and the thyroid. Front Endocrinol (Lausanne) 2022;13:904889. DOI: 10.3389/fendo.2022.904889
20. Gupta S, Jaworska-Bieniek K, Lubinski J, Jakubowska A. Can selenium be a modifier of cancer risk in CHEK2 mutation carriers? Mutagenesis 2013;28(6):625-9. DOI: 10.1093/mutage/get050
21. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine 2015;48(3):756-75. DOI: 10.1007/s12020-014-0477-6
22. Triggiani V, Tafaro E, Giagulli VA et al. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets 2009;9(3):277-94. DOI: 10.2174/ 187153009789044392
23. Guastamacchia E, Giagulli VA, Licchelli B, Triggiani V. Selenium and Iodine in Autoimmune Thyroiditis. Endocr Metab Immune Disord Drug Targets 2015;15(4):288-92. DOI: 10.2174/1871530315 666150619094242
24. Lacka K, Szeliga A. Significance of selenium in thyroid physiology and pathology. Pol Merkur Lekarski 2015;38(228):348-53. Available at: https://pubmed.ncbi.nlm.nih.gov/26098657/
25. Zimmermann MB, Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid 2002;12(10):867-78. DOI: 10.1089/ 105072502761016494
26. Jain RB. Thyroid function and serum copper, selenium, and zinc in general U.S. population. Biol Trace Elem Res 2014;159(1-3):87-98. DOI: 10.1007/s12011-014-9992-9
27. Wu Q, Rayman MP, Lv H et al. Low Population Selenium Status Is Associated With Increased Prevalence of Thyroid Disease. J Clin Endocrinol Metab 2015;100(11):4037-47. DOI: 10.1210/jc.2015-2222
28. Derumeaux H, Valeix P, Castetbon K et al. Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur J Endocrinol 2003;148(3):309-15. DOI: 10.1530/eje.0.1480309
29. Brzozowska M, Kretowski A, Podkowicz K et al. Evaluation of influence of selenium, copper, zinc and iron concentrations on thyroid gland size in school children with normal ioduria. Pol Merkur Lekarski 2006;20(120):672-7. Available at: https://pubmed.ncbi.nlm.nih.gov/ 17007265/
30. Wertenbruch T, Willenberg HS, Sagert C et al. Serum selenium levels in patients with remission and relapse of graves’ disease. Med Chem 2007;3(3):281-4. DOI: 10.2174/157340607780620662
31. Wang Y, Zhao F, Rijntjes E et al. Role of selenium intake for risk and development of hyperthyroidism. J Clin Endocrinol Metab 2019;104(2):568-80. DOI: 10.1210/jc.2018-01713
32. Wang L, Wang B, Chen SR et al. Effect of selenium supplementation on recurrent hyperthyroidism caused by graves’ disease: A prospective pilot study. Horm Metab Res 2016;48(9):559-64. DOI: 10.1055/s-0042-110491
33. Vrca VB, Skreb F, Cepelak I et al. Supplementation with antioxidants in the treatment of Graves’ disease; the effect on glutathione peroxidase activity and concentration of selenium. Clinica Chimica Acta 2004;341(1-2):55-63. DOI: 10.1016/j.cccn.2003.10.028
34. Ruggeri RM, CampennÌ A, Giuffrida G et al. Oxidative stress as a key feature of autoimmune thyroiditis: An update. Minerva Endocrinol 2020;45(4):326-44. DOI: 10.23736/S0391-1977.20.03268-X
35. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012;16:705-43. DOI: 10.1089/ars. 2011.4145
36. Carlson BA, Yoo MH, Shrimali RK et al. Role of selenium-containing proteins in T-cell and macrophage function. The Proceedings of the Nutrition Society 2010;69(3):300-10. DOI: 10.1017/S002966511000176X
37. Wang W, Xue H, Li Y et al. Effects of selenium supplementation on spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. Thyroid 2015;25(10):1137-44. DOI: 10.1089/thy.2014.0568
38. McLachlan SM, Aliesky H, Banuelos B et al. Variable effects of dietary selenium in mice that spontaneously develop a spectrum of thyroid autoantibodies. Endocrinology 2017;158(11):3754-64. DOI: 10.1210/en. 2017-00275
39. Stoedter M, Renko K, Hog A, Schomburg L. Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J 2010;429(1):43-51. DOI: 10.1042/BJ20091868
40. Broome CS, McArdle F, Kyle JA et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 2004;80(1):154-62. DOI: 10.1093/ajcn/80.1.154
41. Wichman J, Winther KH, Bonnema SJ, Hegedüs L. Selenium Supplementation Significantly Reduces Thyroid Autoantibody Levels in Patients with Chronic Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis. Thyroid 2016;26(12):1681-92. DOI: 10.1089/ thy.2016.0256
42. Wang YS, Liang SS, Ren JJ et al. The Effects of Selenium Supplementation in the Treatment of Autoimmune Thyroiditis: An Overview of Systematic Reviews. Nutrients 2023;15(14):3194. DOI: 10.3390/ nu15143194
43. Gärtner R, Gasnier BCH, Dietrich JW et al. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J. Clin. Endocrinol Metab 2002;87:1687-91. DOI: 10.1210/jcem.87.4.8421
44. Duntas LH, Mantzou E, Koutras DA. Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur J Endocrinol 2003;148:389-93. DOI: 10.1530/eje.0.1480389
45. Turker O, Kumanlioglu K, Karapolat I, Dogan I. Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. J Endocrinol 2006;190:151-6. DOI: 10.1677/joe.1.06661
46. Sturniolo G, Mesa J. Selenium supplementation and autoimmune thyroid diseases. Endocrinol Nutr 2013;60(8):423-6. DOI: 10.1016/j.endonu.2013.07.001
47. Winther KH, Bonnema SJ, Cold F et al. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol 2015;172:657-67. DOI: 10.1530/EJE-15-0069
48. Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens) 2018;17(2):183-96. DOI: 10.1007/s42000-018-0033-5
49. Ventura M, Melo M, Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol 2017;2017:1297658. DOI: 10.1155/2017/1297658
50. Santos LR, Neves C, Melo M, Soares P. Selenium and Selenoproteins in Immune Mediated Thyroid Disorders. Diagnostics (Basel) 2018;8(4):70. DOI: 10.3390/diagnostics8040070
51. Davis CD, Tsuji PA, Milner JA. Selenoproteins and cancer prevention. Annu Rev Nutr 2012;32:73-95. DOI: 10.1146/annurev-nutr-071811-150740
52. Renko K, Hofmann PJ, Stoedter M et al. Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J 2009;23(6):1758-65. DOI: 10.1096/fj.08-119370
53. Glattre E, Nygard JF, Aaseth J. Selenium and cancer prevention: observations and complexity. J Trace Elem Med Biol 2012;26(2-3):168-9. DOI: 10.1016/j.jtemb.2012.04.021
54. Combs GF Jr. Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr 2005;135(2):343-7. DOI: 10.1093/jn/135.2.343
55. Rua RM, Nogales F, Carreras O, Ojeda ML. Selenium, selenoproteins and cancer of the thyroid. J Trace Elem Med Biol 2023;76:127115. DOI: 10.1016/ j.jtemb.2022.127115
56. Xiang N, Zhao R, Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol 2009;63(2):351-62. DOI: 10.1007/s00280-008-0745-3
57. De Oliveira Maia M, Batista BAM, Sousa MP et al. Selenium and thyroid cancer: a systematic review. Nutr Cancer 2020;72(8):1255-63. DOI: 10.1080/01635581.2019.1679194
58. Rayman MP. Selenium and human health. Lancet 2012;379 (9822):1256-68. DOI: 10.1016/S0140-6736(11)61452-9
59. Трухан Д.И., Лебедев О.И. Изменения органа зрения при заболеваниях внутренних органов. Справочник поликлинического врача. 2012;9:50-7. Режим доступа: https://www.elibrary.ru/ item.asp? id=22599039
Changes in the organ of vision in diseases of internal organs. Directory of a polyclinic doctor. 2012;9:50-7. Available at: https://www. elibrary.ru/item.asp?id=22599039 (in Russian).
60. Трухан Д.И., Лебедев О.И. Изменение органа зрения при соматических заболеваниях. Терапевтический архив. 2015;8:132-6. DOI: 10.17116/terarkh2015878132-?136
Trukhan D.I., Lebedev O.I. Changes in the organ of vision in somatic diseases. Therapeutic archive. 2015;8:132-6. DOI: 10.17116/terarkh2015878132-?136 (in Russian).
61. Khong JJ, Goldstein RF, Sanders KM et al. Serum selenium status in graves’ disease with and without orbitopathy: A case-control study. Clin Endocrinol (Oxf) 2014;80(6):905-10. DOI: 10.1111/cen.12392
62. Marcocci C, Kahaly GJ, Krassas GE et al. European Group on Graves’ Orbitopathy. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med 2011;364:1920-31. DOI: 10.1056/NEJMoa1012985
63. Foos W, Maliakkal Hernandez J, Mansour TN. Selenium supplementation in thyroid eye disease: an updated review from a clinical ophthalmic perspective. Orbit 2023 Nov 17:1-11. DOI: 10.1080/ 01676830.2023.2276783
64. Leo M, Bartalena L, Rotondo Dottore G et al. Effects of selenium on short-term control of hyperthyroidism due to graves’ disease treated with methimazole: Results of a randomized clinical trial. J Endocrinol Invest 2017;40(3):281-7. DOI: 10.1007/s40618-016-0559-9
65. Genere N, Stan MN. Current and emerging treatment strategies for graves’ orbitopathy. Drugs 2019;79(2):109-24. DOI: 10.1007/s40265-018-1045-9
66. Almanza-Monterrubio M, Garnica-Hayashi L, Dávila-Camargo A, Nava-Castañeda Á. Oral selenium improved the disease activity in patients with mild graves’ orbitopathy. J francais d’ophtalmologie 2021;44(5):643-51. DOI: 10.1016/j.jfo.2020.08.029
67. Bartalena L, Kahaly GJ, Baldeschi L et al. The 2021 European group on graves’ orbitopathy (Eugogo) clinical practice guidelines for the medical management of graves’ orbitopathy. Eur J Endocrinol 2021;185(4):G43–g67. DOI: 10.1530/eje-21-0479
68. Mahmoodianfard S, Vafa M, Golgiri F et al. Effects of Zinc and Selenium Supplementation on Thyroid Function in Overweight and Obese Hypothyroid Female Patients: A Randomized Double-Blind Controlled Trial. J Am Coll Nutr 2015;34(5):391-9. DOI: 10.1080/07315724.2014.926161
69. Zavros A, Andreou E, Aphamis G et al. The Effects of Zinc and Selenium Co-Supplementation on Resting Metabolic Rate, Thyroid Function, Physical Fitness, and Functional Capacity in Overweight and Obese People under a Hypocaloric Diet: A Randomized, Double-Blind, and Placebo-Controlled Trial. Nutrients 2023;15(14):3133. DOI: 10.3390/nu15143133
70. Severo JS, Morais JBS, de Freitas TEC et al. The Role of Zinc in Thyroid Hormones Metabolism. Int J Vitam Nutr Res 2019;89(1-2):80-8. DOI: 10.1024/0300-9831/a000262
71. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 1998;68(2 Suppl):447S-463S. DOI: 10.1093/ajcn/68.2.447S
72. Overbeck S, Rink L, Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch Immunol Ther Exp (Warsz) 2008;56(1):15-30. DOI: 10.1007/s00005-008-0003-8
73. Kirkil G, Hamdi Muz M, Seçkin D et al. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir Med 2008;102(6):840-4. DOI: 10.1016/j.rmed.2008.01.010
74. Samad N, Sodunke TE, Abubakar AR et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021;14:527-50. DOI: 10.2147/JIR.S295377
75. Li J, Cao D, Huang Y et al. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr 2022;9:798078. DOI: 10.3389/fnut. 2022.798078
76. Paulazo MA, Klecha AJ, Sterle HA et al. Hypothyroidism-related zinc deficiency leads to suppression of T lymphocyte activity. Endocrine 2019;66(2):266-77. DOI: 10.1007/s12020-019-01936-7
77. Betsy A, Binitha M, Sarita S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichol 2013;5(1):40-2. DOI: 10.4103/0974-7753.114714
78. Ertek S, Cicero AF, Caglar O, Erdogan G. Relationship between serum zinc levels, thyroid hormones and thyroid volume following successful iodine supplementation. Hormones (Athens) 2010;9(3):263-8. DOI: 10.14310/horm.2002.1276
79. El-Fadeli S, Bouhouch S, Skalny AV et al. Effects of imbalance in trace element on thyroid gland from Moroccan children. Biol Trace Elem Res 2016;170(2):288-93. DOI: 10.1007/s12011-015-0485-2
80. Kudabayeva KI, Koshmaganbetova GK, Mickuviene N et al. Hair trace elements are associated with increased thyroid volume in schoolchildren with goiter. Biol Trace Elem Res 2016;174(2):261-6. DOI: 10.1007/s12011-016-0711-6
81. Al-Bazi MM, Kumosani TA, Al-Malki AL et al. Association of trace elements abnormalities with thyroid dysfunction. Afr Health Sci 2021;21(3):1451-9. DOI: 10.4314/ahs.v21i3.56
82. Gumulec J, Masarik M, Adam V et al. Serum and tissue zinc in epithelial malignancies: A meta-analysis. PloS One 2014;9(6):e99790. DOI: 10.1371/journal.pone.0099790
83. Baltaci AK, Dundar TK, Aksoy F, Mogulkoc R. Changes in the serum levels of trace elements before and after the operation in thyroid cancer patients. Biol Trace Elem Res 2017;175(1):57-64. DOI: 10.1007/s12011-016-0768-2
84. Al-Sayer H, Mathew TC, Asfar S et al. Serum changes in trace elements during thyroid cancers. Mol Cell Biochem 2004;260(1-2):1-5. DOI: 10.1023/B:MCBI.0000026027.20680.c7
85. Emami A, Nazem MR, Shekarriz R, Hedayati M. Micronutrient status (calcium, zinc, vitamins D and E) in patients with medullary thyroid carcinoma: A cross-sectional study. Nutrition 2017;41:86-9. DOI: 10.1016/j.nut.2017.04.004
86. Pathak R, Pathak A. Effectiveness of zinc supplementation on lithium-induced alterations in thyroid functions. Biol Trace Elem Res 2021;199(6):2266-71. DOI: 10.1007/s12011-020-02356-9
87. Stiles LI, Ferrao K, Mehta KJ. Role of zinc in health and disease. Clin Exp Med 2024;24(1):38. DOI: 10.1007/s10238-024-
01302-6
88. Fiorino S, Gallo C, Zippi M et al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res 2020;32(10):2115-31. DOI: 10.1007/s40520-020-01669-y
89. Capriello S, Stramazzo I, Bagaglini MF et al. The relationship between thyroid disorders and vitamin A.: A narrative minireview. Front Endocrinol (Lausanne) 2022;13:968215. DOI: 10.3389/fendo.2022. 968215
90. Biebinger, R, Arnold, M, Koss, M et al. Effect of concurrent vitamin A and iodine deficiencies on the thyroid-pituitary axis in rats. Thyroid 2006;16:961-5. DOI: 10.1089/thy.2006.16.961
91. Hess SY. The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies. Best Pract Res Clin Endocrinol Metab 2010;24(1):117-32. DOI: 10.1016/j.beem. 2009.08.012
92. O'Kane SM, Mulhern MS, Pourshahidi LK et al. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr Rev. 2018 Jun 1;76(6):418-431. DOI: 10.1093/nutrit/nuy008
93. Carazo A, Macáková K, Matoušová K et al. Vitamin a update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients 2021;13(5):1703. DOI: 10.3390/nu13051703
94. Zimmermann MB. Interactions of vitamin a and iodine deficiencies: Effects on the pituitary-thyroid axis. Int J Vitam Nutr Res 2007;77(3):236-40. DOI: 10.1024/0300-9831.77.3.236
95. Brossaud J, Pallet V, Corcuff JB. Vitamin a, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017;6(7):R121-R130. DOI: 10.1530/EC-17-0101
96. Grignard E, Håkansson H, Munn S. Regulatory needs and activities to address the retinoid system in the context of endocrine disruption: The European viewpoint. Reprod Toxicol 2020;93:250-8. DOI: 10.1016/j. reprotox.2020.03.002
97. Wolf G. The regulation of the thyroid-stimulating hormone of the anterior pituitary gland by thyroid hormone and by 9-cys-retinoic acid. Nutr Rev 2002;60:374-7. DOI: 10.1301/00296640260385919
98. Li Y, Wongsiriroj N, Blaner WS. The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg Nutr 2014;3(3):126-39. DOI: 10.3978/j.issn.2304-3881.2014.05.04
99. Diyya ASM, Thomas NV. Multiple Micronutrient Supplementation: As a Supportive Therapy in the Treatment of COVID-19. Biomed Res Int 2022;2022:3323825. DOI: 10.1155/2022/3323825
100. Farasati Far B, Broomand Lomer N, Gharedaghi H et al. Is beta-carotene consumption associated with thyroid hormone levels? Front Endocrinol (Lausanne) 2023;14:1089315. DOI: 10.3389/fendo.2023.1089315
101. Goswami UC, Choudhury S. The status of retinoids in women suffering from hyper- and hypothyroidism: interrelationship between vitamin A, beta-carotene and thyroid hormones. Int J Vitam Nutr Res 1999;69(2):132-5. DOI: 10.1024/0300-9831.69.2.132
102. Aktuna D, Buchinger W, Langsteger W et al. Beta-carotene, vitamin A and carrier proteins in thyroid diseases. Acta Med Austriaca 1993;20(1-2):17-20. Available at: https://pubmed.ncbi.nlm.nih.gov/ 8475673/
103. Marrocco W, Adoncecchi L, Suraci C et al. Behavior of vitamin A, beta-carotene, retinol binding protein and prealbumin in the plasma of hypo- and hyperthyroid subjects. Boll Soc Ital Biol Sper 1984;60(4):769-75. Available at: https://pubmed.ncbi.nlm.nih.gov/ 6428435/
104. Трухан Д.И., Викторова И.А., Иванова Д.С. Актуальные аспекты клиники, диагностики и лечения заболеваний желчного пузыря и желчевыводящих путей. Санкт-Петербург: СпецЛит, 2023. Режим доступа: https://www.elibrary.ru/item.asp?id=50390726
Trukhan D.I., Viktorova I.A., Ivanova D.S. Current aspects of the clinic, diagnosis and treatment of diseases of the gallbladder and biliary tract. Saint Petersburg: SpetsLit, 2023. Available at: https://www.elibrary.ru/item.asp?id=50390726 (in Russian).
105. Рожкова М.Ю., Трухан Д.И., Иванова Д.С., Голошубина В.В. Актуальные аспекты экстрагенитальной патологии: в фокусе – недостаточность секреторной функции щитовидной железы и дисфункциональные расстройства билиарного тракта. Клинический разбор в общей медицине. 2023;4(3):6-11. DOI: 10.47407/kr2023.4.3.00215
Rozhkova M.Yu., Trukhan D.I., Ivanova D.S., Goloshubina V.V. Actual aspects of extragenital pathology: focus on insufficiency of the secretory function of the thyroid gland and dysfunctional disorders of the biliary tract. Clinical review for general practice. 2023;4(3):6-11. DOI: 10.47407/kr2023.4.3.00215 (in Russian).
106. Priyadarshani AMB. Insights of hypercarotenaemia: A brief review. Clin Nutr ESPEN 2018;23:19-24. DOI: 10.1016/j.clnesp.2017.12.002
107. Figueroa-Méndez R, Rivas-Arancibia S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol 2015;6:397. DOI: 10.3389/fphys.2015.00397
108. Ademoglu E, Gokkusu C, Yarman S, Azizlerli H. The effect of methimazole on the oxidant and antioxidant system in patients with hyperthyroidism. Pharmacol Res 1998;38:93-6. DOI: 10.1006/phrs.1998.0336
109. Ozdem S, Aliciguzel Y, Ozdem SS, Karayalcin U. Effects of propylthiouracil treatment on antioxidant activities in blood of toxic multinodular goiter patients. Pharmacology 2000;61(1):31-6. DOI: 10.1159/000028377
110. Alicigüzel Y, Ozdem SN, Ozdem SS et al. Erythrocyte, plasma, and serum antioxidant activities in untreated toxic multinodular goiter patients. Free Radic Biol Med 2001;30(6):665-70. DOI: 10.1016/s0891-5849(00)00509-8
111. Mohan Kumar KM, Bobby Z, Selvaraj N et al. Possible link between glycated hemoglobin and lipid peroxidation in hyperthyroidism. Clin Chim Acta 2004;342:187-92. DOI: 10.1016/j.cccn.2003.12.027
112. Londzin-Olesik M, Kos-Kudła B, Nowak A et al. The effect of thyroid hormone status on selected antioxidant parameters in patients with Graves' disease and active thyroid-associated orbitopathy. Endokrynol Pol 2020;71(5):418-24. DOI: 10.5603/EP.a2020.0049
113. Woollard KJ, Loryman CJ, Meredith E et al. Effects of oral vitamin C on monocyte: endothelial cell adhesion in healthy subjects. Biochem Biophys Res Commun 2002;294:1161-8. DOI: 10.1016/S0006-291X(02)00603-4
114. Owen PJ, Rajiv C, Vinereanu D et al. Subclinical hypothyroidism, arterial stiffness, and myocardial reserve. J Clin Endocrinol Metab 2006;91:2126-32. DOI: 10.1210/jc.2005-2108
115. Fernandez-Real JM, Lopez-Bermejo A, Castro A et al. Thyroid function is intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid subjects. J Clin Endocrinol Metab 2006;91:3337-43. DOI: 10.1210/jc.2006-0841
116. Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res 2021;40(1):343. DOI: 10.1186/s13046-021-02134-y
117. Su X, Shen Z, Yang Q, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019;9(15):4461-73. DOI: 10.7150/thno.35219
118. Jingtai Z, Linfei H, Yuyang Q et al. Targeting Aurora-a inhibits tumor progression and sensitizes thyroid carcinoma to Sorafenib by decreasing PFKFB3-mediated glycolysis. Cell Death Dis 2023;14(3):224. DOI: 10.1038/s41419-023-05709-z
119. Ebrahimzadeh-Attari V, Panahi G, Hebert JR et al. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect 2021;11(2):119-36. DOI: 10.34172/hpp.2021.17
120. Karimi F, Omrani GR. Effects of selenium and vitamin C on the serum level of antithyroid peroxidase antibody in patients with autoimmune thyroiditis. J Endocrinol Invest 2019;42(4):481-7. DOI: 10.1007/ s40618-018-0944-7
121. Jubiz W, Ramirez M. Effect of vitamin C on the absorption of levothyroxine in patients with hypothyroidism and gastritis. J Clin Endocrinol Metab 2014;99(6):E1031-E1034. DOI: 10.1210/jc.2013-4360
122. Centanni M, Gargano L, Canettieri G et al. Thyroxine in goiter, helicobacter pylori infection, and chronic gastritis. N Engl J Med 2006;354(17):1787-95. DOI: 10.1056/NEJMoa043903
123. Esmaeilizadeh M, Hosseini M, Beheshti F et al. Vitamin C improves liver and renal functions in hypothyroid rats by reducing tissue oxidative injury. Int J Vitam Nutr Res 2020;90(1-2):84-94. DOI: 10.1024/ 0300-9831/a000495
124. Iddir M, Brito A, Dingeo G et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020;12(6):1562. DOI: 10.3390/nu12061562
125. Napolitano G, Fasciolo G, Di Meo S, Venditti P. Vitamin E Supplementation and Mitochondria in Experimental and Functional Hyperthyroidism: A Mini-Review. Nutrients 2019;11(12):2900. DOI: 10.3390/ nu11122900
126. Yu J, Shan Z, Chong W et al. Vitamin E ameliorates iodine-induced cytotoxicity in thyroid. J Endocrinol 2011;209(3):299-306. DOI: 10.1530/JOE-11-0030
127. Hedayati M, Niazmand S, Hosseini M et al. Vitamin E improved redox homeostasis in heart and aorta of hypothyroid rats. Endocr Regul 2017;51(4):205-12. DOI: 10.1515/enr-2017-0021
128. Hedayati-Moghadam M, Baghcheghi Y, Beheshti F et al. Vitamin E Prevented Hepatic and Renal Tissue Damage in Hypothyroid Rats. Adv Biomed Res 2023;12:75. DOI: 10.4103/abr.abr_275_21
129. Pan T, Zhong M, Zhong X et al. Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine 2013;43:434-9. DOI: 10.1007/s12020-012-9801-1
130. Guo Y, Wan SY, Zhong X et al. Levothyroxine replacement therapy with vitamin E supplementation prevents the oxidative stress and apoptosis in hippocampus of hypothyroid rats. Neuroendocrinol Lett 2014;35:684-90. Available at: https://pubmed.ncbi.nlm.nih.gov/25702296/
131. Kumar N, Das A, Kumari N et al. Intermittent Fasting and Vitamin E Supplementation Attenuates Hypothyroidism-Associated Ophthalmopathy. Mol Nutr Food Res 2024 Feb 11:e2300589. DOI: 10.1002/mnfr.202300589
132. Трухан Д.И., Давыдов Е.Л. Место и роль терапевта и врача общей практики в курации коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19): акцент на неспецифическую профилактику. Фарматека. 2021;28(10):34-45. DOI: 10.18565/pharmateca.2021.10.34-45
Trukhan D.I., Davydov E.L. The place and role of a therapist and general practitioner in the management of comorbid patients during the pandemic of the new coronavirus infection (COVID-19): an emphasis on non-specific prevention. Farmateka. 2021;28(10):34-45. DOI: 10.18565/pharmateca.2021.10.34-45 (in Russian).
133. Трухан Д.И., Давыдов Е.Л., Чусова Н.А., Чусов И.С. Возможности терапевта в профилактике и на реабилитационном этапе после новой коронавирусной инфекции (COVID-19) коморбидных пациентов с артериальной гипертензией. Клинический разбор в общей медицине. 2021;5:6–15. DOI: 10.47407/kr2021.2.5.00064
Trukhan D.I., Davydov E.L., Chusova N.A., Chusov I.S. Opportunities of the therapist in prevention and at the rehabilitation stage after new coronaviral infection (COVID-19) in comorbid patients with arterial hypertension. Clinical review for general practice. 2021;5:6-15. DOI: 10.47407/kr2021.2.5.00064 (in Russian).
134. Трухан Д.И., Давыдов Е.Л., Чусова Н.А. Нутрицевтики в профилактике, лечении и на этапе реабилитации после новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2021;7:21-34. DOI: 10.47407/kr2021.2.7.00085
Trukhan D.I., Davydov E.L., Chusova N.A. Nutriceutics in prevention, treatment and at the stage of rehabilitation after new coronavirus infection (COVID-19). Clinical review for general practice. 2021;7:21-34. DOI: 10.47407/kr2021.2.7.00085 (in Russian).
135. Трухан Д.И., Турутина Н.М. Витаминно-минеральные комплексы в лечении острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2022;6:52-60. DOI: 10.47407/ kr2022.3.6.00177
Trukhan D.I., Turutina N.M. Vitamin and mineral complexes in the treatment of acute respiratory viral infections. Clinical review for general practice. 2022;6:52-60. DOI: 10.47407/kr2022.3.6.00177 (in Russian).
136. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1-2):136-45. DOI: 10.18565/pharmateca.2023.1-2.136-145
Trukhan D.I., Viktorova I.A., Ivanova D.S., Goloshubina V.V. Acute respiratory viral infections: possibilities of vitamin and mineral complexes in treatment, prevention and rehabilitation. Farmateka. 2023;30(1-2):136-45. DOI: 10.18565/ pharmateca.2023.1-2.136-145 (in Russian).
137. Попова Е.Н., Пономарева Л.А., Чинова А.А., Андрианов А.И. Комплексный подход к терапии острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2023;4(8):42-5. DOI: 10.47407/kr2023.4.8.00330
Popova E.N., Ponomareva L.A., Chinova A.A., Andrianov A.I. Multifaceted approach to treatment of acute respiratory viral infections. Clinical review for general practice. 2023;4(8):42-5. DOI: 10.47407/kr2023.4.8.00330 (in Russian).
138. Попова Е.Н., Митькина М.И., Чинова А.А., Пономарева Л.А. Роль витаминов и микроэлементов в профилактике и лечении бронхолегочных заболеваний у взрослых. Клинический разбор в общей медицине. 2023;4(2):36-42. DOI: 10.47407/kr2023.4.2.00202
Popova E.N., Mitkina M.I., Chinova A.A., Ponomareva L.A. The role of vitamins and minerals in prevention and treatment of bronchopulmonary diseases in adults. Clinical review for general practice. 2023;4(2):36-42. DOI: 10.47407/kr2023.4.2.00202 (in Russian).
139. Трухан Д.И. Коморбидный пациент на терапевтическом приеме в период пандемии COVID-19. Актуальные аспекты реабилитационного периода. Фарматека. 2022;29(13):15-24. DOI: 10.18565/ pharmateca.2022.13.15-24
Trukhan D.I. A comorbid patient at a therapeutic reception during the COVID-19 pandemic. current aspects of the rehabilitation period. Farmateka. 2022;29(13):15-24. DOI: 10.18565/pharmateca.2022.13.15-24 (in Russian).
140. Трухан Д.И., Иванова Д.С. Витаминно-минеральные комплексы в профилактике, лечении и на этапе реабилитации после острых респираторных вирусных инфекций и новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2022;5:33-46. DOI: 10.47407/kr2022.3.5.00160
Trukhan D.I., Ivanova D.S. Vitamin and mineral complexes in prevention, treatment and rehabilitation after acute respiratory viral infections and new coronavirus infection (COVID-19). Clinical review for general practice. 2022;5:33-46. DOI: 10.47407/kr2022.3.5.00160 (in Russian).
For citation:Trukhan D.I., Druk I.V., Viktorova I.A. Not iodine alone. Role of selenium, zinc, vitamins A, C, E in the physiology and pathology of the thyroid gland. Clinical review for general practice. 2024; 5 (4): 34–45 (In Russ.). DOI: 10.47407/kr2024.5.4.00417
All accepted articles publish licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.