Clinical review for general practice

ISSN (Print) 2713-2552
ISSN (Online) 2782-5671
  • Home
  • about
  • archives
  • contacts
left
FULLSCREEN > Archive > 2025 > Vol 6, №1 (2025) > Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases

Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases

Tatyana A. Gretseva , Damir A. Enikeyev , Evelina A. Shaidullina , Liana M. Djanbekova , Valeria S. Karpelevich , Alsu R. Kuzhina , Alleiss I. Magomedova , Ildar R. Valeev , Gulnaz S. Gimranova , Leysan M. Sayarova , Nadezhda A. Klavdieva , Aminat A. Ataeva , Natali Yu. Salimova , Diana R. Menyasheva , Bakhrom M. Berdiev

For citation:


  • Abstract
  • About the Author
  • References

Abstract

Introduction. Cardiovascular diseases (CVD) continue to be the leading cause of death worldwide. The development of new therapeutic approaches that can more accurately affect the molecular mechanisms of CVD is extremely important. Recent breakthroughs in the field of genetic engineering, such as CRISPR-Cas9 (Clustered Regularly Interspaced Palindromic Repeats/CRISPR associated protein 9) technology and related gene-modulating enzymes, open unprecedented opportunities for the creation of new therapies. These technologies make it possible not only to edit the genome, but also to directly eliminate the root causes of CVD. 
Aim. To analyze the literature on the use of CRISPR-Cas9 in CVD therapy.
Materials and methods. The authors conducted a search for publications in the electronic databases PubMed and Elibrary. The evaluation of the articles was carried out in accordance with the recommendations of PRISMA. After the selection procedure, 72 articles were included in the review.
Results. The article discusses various aspects of the use of CRISPR for the correction of genetic mutations that contribute to the development of cardiopathies, as well as the prospects of this technology in the context of gene therapy. The article focuses on the possibilities that CRISPR therapy opens up to improve the effectiveness of CVD treatment, and also emphasizes the need for further research to address issues of safety, delivery and long-term effectiveness. The results of the analysis give hope for the creation of innovative approaches to the fight against cardiac ailments, which can significantly improve the quality of life of patients and reduce the incidence rate.
Conclusion. To date, the rapidly developing CRISPR toolkit has been successfully implemented into clinical practice due to the many encouraging successes achieved in basic research laboratories and in preclinical trials. These achievements give hope that the complex and long-term problems of CVD can be solved with the help of innovative approaches based on genome editing, which creates a new era in medicine.
Keywords: CRISPR-Cas9, cardiovascular diseases, cardiology, genetic editing, genetic modification, gene therapy.

About the Author

Tatyana A. Gretseva 1 , Damir A. Enikeyev 2 , Evelina A. Shaidullina 2 , Liana M. Djanbekova 1 , Valeria S. Karpelevich 3 , Alsu R. Kuzhina 2 , Alleiss I. Magomedova 4 , Ildar R. Valeev 2 , Gulnaz S. Gimranova 2 , Leysan M. Sayarova 2 , Nadezhda A. Klavdieva 5 , Aminat A. Ataeva 1 , Natali Yu. Salimova 2 , Diana R. Menyasheva 2 , Bakhrom M. Berdiev 2

1 Rostov State Medical University, Rostov-on-Don, Russia

2 Bashkir State Medical University, Ufa, Russia

3 Russian University of Medicine, Moscow, Russia

4 Kuban State Medical University, Krasnodar, Russia

5 Puchkov Ambulance and Emergency Medical Care Station in Moscow, Moscow, Russia

References

1. World Health Organization: Cardiovascular diseases (CVDs) 2021. URL: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2. Концевая А.В., Муканеева Д.К., Игнатьева В.И. и др. Экономика профилактики сердечно-сосудистых заболеваний в Российской Федерации. Российский кардиологический журнал. 2023;28(9):5521. DOI: 10.15829/1560-4071-2023-5521
Kontsevaya A.V., Mukaneeva D.K., Ignatieva V.I. et al. Economics of cardiovascular prevention in the Russian Federation. Russian Journal of Cardiology. 2023;28(9):5521. DOI: 10.15829/1560-4071-2023-5521 (in Russian).
3. Погосова Н.В., Бойцов С.А. Профилактическая кардиология 2024: состояние проблемы и перспективы развития. Кардиология. 2024;64(1):4-13. DOI:10.18087/cardio.2024.1.n2636
Pogosova N.V., Boytsov S.A. Preventive Cardiology 2024: State of Problem Perspectives of Development. Kardiologiia. 2024;64(1):4-13. DOI:10.18087/cardio.2024.1.n2636 (in Russian).
4. Бойцов С.А., Демкина А.Е., Ощепкова Е.В., Долгушева Ю.А. Достижения и проблемы практической кардиологии в России на современном этапе. Кардиология. 2019;59(3):53-59. DOI:10.18087/cardio.2019.3.10242
Boytsov S.A., Demkina A.E., Oshchepkova E.V., Dolgusheva Yu.A. Progress and Problems of Practical Cardiology in Russia at the Present Stage. Kardiologiia. 2019;59(3):53-9. DOI:10.18087/cardio.2019. 3.10242 (in Russian).
5. Намиот Е.Д., Кузнецова В.С., Куставинова Е.В., Карташкина Н.Л. Перспективы использования системы CRISPR/Cas9 для лечения и моделирования сердечно-сосудистых заболеваний (обзор). Журнал медико-биологических исследований. 2021; 9(2): 213-25. DOI: 10.37482/2687-1491-Z059
Namiot E.D., Kuznetsova V.S., Kustinova E.V., Kartokina N.L. Experts on the use of the CRISPR/Cas9 system for the treatment and modeling of cardio-Juror (review). Journal of Biomedical Research. 2021; 9(2): 213–225. DOI: 10.37482/2687-1491-Z059 (in Russian).
6. Колбин А.С., Гомон Ю.М. Перспективы применения системы CRISPR/Cas9 с позиции клинической фармакологии. Клиническая фармакология и терапия. 2024;33(2):7-15. DOI: 10.32756/ 0869-5490-2024-2-7-15
Kolbin A.S., Gomon Yu.M. The use of the CRISPR/Cas9 system from the perspective of clinical pharmacology. Klinicheskaya farmakologiya i terapiya = Clin Pharmacol Ther. 2024;33(2):7-15. DOI: 10.32756/ 0869-5490-2024-2-7-15 (in Russian).
7. Затейщиков Д.А., Фаворова О.О., Чумакова О.С. Молекулярная кардиология: от расшифровки генетической природы и механизмов развития заболевания до внедрения в клиническую практику. Терапевтический архив. 2022;94(4):463-6.
Zateyshchikov D.A., Favorova O.O., Chumakova O.S. Molecular cardiology: from decoding the genetic nature and mechanisms of the diseases development to the introduction into the clinic. Terapevticheskii Arkhiv = Ter Arkh. 2022;94(4):463-6. DOI: 10.26442/00403660. 2022.04.201467 (in Russian).
8. Пестрикова А.А. Правовые и этические нормы редактирования генома человека. Журнал зарубежного законодательства и сравнительного правоведения. 2021;17(5):37-51. DOI: 10.12737/ jflcl.2021.052
Pestrikova A. A. Analysis of Legal and Ethical Standards in the Field of Human Gene Editing. Journal of Foreign Legislation and Comparative Law. 2021;17(5):37-51. DOI: 10.12737/jflcl.2021.052 (in Russian).
9. Zhang Y, Nishiyama T, Li H et al. A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Mol Ther Methods Clin Dev 2021;22:122-32. DOI: 10.1016/j.omtm.2021.05.014
10. Gier RA, Budinich KA, Evitt NH et al. High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nat Commun 2020;11(1):3455. DOI: 10.1038/s41467-020-17209-1
11. Sun W, Wang J, Hu Q et al. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Sci Adv 2020;6(21):eaba2983. DOI: 10.1126/sciadv.aba2983
12. Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 2017;28(7-8):247-61. DOI: 10.1007/s00335-017-9697-4
13. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008;322(5909):1843-5. DOI: 10.1126/science.1165771
14. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346 (6213):1258096. DOI: 10.1126/science.1258096
15. Zhang LP, Nie YH, Tang T et al. Analysis of Nonhomologous End Joining and Homologous Recombination Efficiency in HEK-293T Cells using GFP Based Reporter Systems. J Vis Exp 2024;(204). DOI: 10.3791/66501
16. Popp MW, Maquat LE. Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine. Cell 2016;165(6):1319-22. DOI: 10.1016/j.cell.2016.05.053
17. Ma X, Chen C, Veevers J et al. CRISPR/Cas9-mediated gene manipulation to create single-amino-acid-substituted and floxed mice with a cloning-free method. Sci Rep 2017;7:42244. DOI: 10.1038/srep42244
18. Papathanasiou S, Markoulaki S, Blaine LJ et al. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat Commun 2021;12(1):5855. DOI: 10.1038/s41467-021-26097-y
19. Steczina S, Mohran S, Bailey LRJ et al. MYBPC3-c.772G>A mutation results in haploinsufficiency and altered myosin cycling kinetics in a patient induced stem cell derived cardiomyocyte model of hypertrophic cardiomyopathy. J Mol Cell Cardiol 2024;191:27-39. DOI: 10.1016/j.yjmcc.2024.04.010
20. Ghahremani S, Kanwal A, Pettinato A et al. CRISPR Activation Reverses Haploinsufficiency and Functional Deficits Caused by TTN Truncation Variants. Circulation 2024;149(16):1285-97. DOI: 10.1161/CIRCULATIONAHA.123.063972
21. Gillmore JD, Gane E, Taubel J et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med 2021;385(6):493-502. DOI: 10.1056/NEJMoa2107454
22. Yee AW, Aldeghi M, Blakeley MP et al. A molecular mechanism for transthyretin amyloidogenesis. Nat Commun 2019;10(1):925. DOI: 10.1038/s41467-019-08609-z
23. Чумакова О.С., Насонова С.Н., Фролова Ю.В. и др. Редкий вариант в гене TTR (p.E112K) ассоциирован с развитием системного амилоидоза и новым симптомом – гиперемией кожи в ответ на прием этанола: сегрегационный анализ в семье и обзор литературы. Терапевтический архив. 2023;95(4):335-40. DOI: 10.26442/ 00403660.2023.04.202160
Chumakova O.S., Nasonova S.N., Frolova Y.V. et al. A rare variant in the TTR gene (p.E112K) is associated with systemic amyloidosis and a new symptom – skin hyperemia in response to ethanol intake: family segregation analysis, literature review, and a clinical case. Case report. Terapevticheskii arkhiv. 2023;95(4):335-40. DOI: 10.26442/ 00403660.2023.04.202160 (in Russian).
24. Romano R, Ghahremani S, Zimmerman T et al. Reading Frame Repair of TTN Truncation Variants Restores Titin Quantity and Functions. Circulation 2022;145(3):194-205. DOI: 10.1161/CIRCULATIONAHA.120.049997
25. Yutzey KE. Cardiomyocyte Proliferation: Teaching an Old Dogma New Tricks. Circ Res 2017;120(4):627-9. DOI: 10.1161/CIRCRESAHA.116.310058
26. Wang L, Wang P, Liu Y et al. The HpSGNi system: A compact approach for genetic suppression without sequence limitation in Escherichia coli. J Biotechnol 2024;379:18-24. DOI: 10.1016/j.jbiotec.2023.11.004
27. Wang Y, Feng YL, Liu Q et al. TREX2 enables efficient genome disruption mediated by paired CRISPR-Cas9 nickases that generate 3'-overhanging ends. Mol Ther Nucleic Acids 2023;34:102072. DOI: 10.1016/j.omtn.2023.102072
28. Ran FA, Hsu PD, Wright J et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013;8(11):2281-308. DOI: 10.1038/ nprot.2013.143
29. Komor AC, Kim YB, Packer MS et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533(7603):420-4. DOI: 10.1038/nature17946
30. Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576(7785):149-57. DOI: 10.1038/s41586-019-1711-4
31. Tang L, Yang F, He X et al. Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells. Cell Regen 2019;8(2):44-50. DOI: 10.1016/j.cr.2019.08.002
32. Miller SM, Wang T, Randolph PB et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 2020;38(4):471-81. DOI: 10.1038/s41587-020-0412-8
33. Hu JH, Miller SM, Geurts MH et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018;556(7699): 57-63. DOI: 10.1038/nature26155
34. Gaudelli NM, Komor AC, Rees HA et al. Programmable base editing of AT to GC in genomic DNA without DNA cleavage. Nature 2017; 551(7681):464-71. DOI: 10.1038/nature24644
35. Koblan LW, Doman JL, Wilson C et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 2018;36(9):843-6. DOI: 10.1038/nbt.4172
36. Pettinato AM, Ladha FA, Mellert DJ et al. Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation of Human TNNT2 Variants. Circulation 2020;142(23):2262-75. DOI: 10.1161/CIRCULATIONAHA.120.047999
37. Hartman JJ, Hwee DT, Robert-Paganin J et al. Aficamten is a small-molecule cardiac myosin inhibitor designed to treat hypertrophic cardiomyopathy. Nat Cardiovasc Res 2024;3(8):1003-16. DOI: 10.1038/s44161-024-00505-0
38. Chai AC, Cui M, Chemello F et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med 2023;29(2):401-11. DOI: 10.1038/s41591-022-02176-5
39. Reichart D, Newby GA, Wakimoto H et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 2023;29(2):412-21. DOI: 10.1038/s41591-022-02190-7
40. Wu S, Yang P, Geng Z et al. Base editing effectively prevents early-onset severe cardiomyopathy in Mybpc3 mutant mice. Cell Res 2024;34(4):327-30. DOI: 10.1038/s41422-024-00930-7
41. Артемьева С.Б., Белоусова Е.Д., Влодавец Д.В. и др. Опыт применения терапии пропуском экзона 45 у пациентов с прогрессирующей мышечной дистрофией Дюшенна. Медицинская генетика. 2024;23(1):19-25. DOI: 10.25557/2073-7998.2024.01.19-25
Artemyeva S.B., Belousova E.D., Vlodavets D.V. et al. Experience with exon 45 skipping therapy in patients with Duchenne muscular dystrophy. Medical Genetics. 2024;23(1):19-25. DOI: 10.25557/2073-7998.2024.01.19-25 (in Russian).
42. Lin J, Jin M, Yang D et al. Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model. Nat Commun 2024;15(1):5927. DOI: 10.1038/s41467-024-50340-x
43. Lebek S, Chemello F, Caravia XM et al. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 2023;379(6628):179-85. DOI: 10.1126/science.ade1105
44. Kurt IC, Zhou R, Iyer S et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 2021;39(1):41-6. DOI: 10.1038/s41587-020-0609-x
45. Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023r;24(3):161-77. DOI: 10.1038/ s41576-022-00541-1
46. Nishiyama T, Zhang Y, Cui M et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med 2022;14(672):eade1633. DOI: 10.1126/scitranslmed.ade1633
47. Davis JR, Banskota S, Levy JM et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol 2024;42(2):253-64. DOI: 10.1038/s41587-023-01758-z
48. Gjaltema RAF, Goubert D, Huisman C et al. KRAB-Induced Heterochromatin Effectively Silences PLOD2Gene Expression in Somatic Cells and is Resilient to TGFβ1 Activation. Int J Mol Sci 2020;21(10):3634. DOI: 10.3390/ijms21103634
49. Nuñez JK, Chen J, Pommier GC et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 2021;184(9):2503-19.e17. DOI: 10.1016/j.cell.2021.03.025
50. Kwon DY, Zhao YT, Lamonica JM, Zhou Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat Commun 2017;8:15315. DOI: 10.1038/ncomms15315
51. Wen X, Han M, Hosoya M et al. Identification of BRAF Inhibitor Resistance-associated lncRNAs Using Genome-scale CRISPR-Cas9 Transcriptional Activation Screening. Anticancer Res 2024;44(6):2349-58. DOI: 10.21873/anticanres.17042
52. Chavez A, Scheiman J, Vora S et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 2015;12(4):326-8. DOI: 10.1038/nmeth
53. Gilbert LA, Larson MH, Morsut L et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013;154(2):442-51. DOI: 10.1016/j.cell.2013.06.044
54. Drouin LM, Agbandje-McKenna M. Adeno-associated virus structural biology as a tool in vector development. Future Virol 2013;8(12):1183-99. DOI: 10.2217/fvl.13.112
55. Schoger E, Carroll KJ, Iyer LM et al. CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart. Circ Res 2020;126(1):6-24. DOI: 10.1161/CIRCRESAHA.118.314522
56. Zhang R, Liu J, Xue G et al. Forced activation of dystrophin transcription by CRISPR/dCas9 reduced arrhythmia susceptibility via restoring membrane Nav1.5 distribution. Gene Ther 2023;30(1-2):142-9. DOI: 10.1038/s41434-022-00348-z
57. Cirino AL, Cuddy S, Lakdawala NK. Deletion of entire LMNA gene as a cause of cardiomyopathy. Heart Rhythm Case Rep 2020;6(7):395-397. DOI: 10.1016/j.hrcr.2020.03.008
58. Anzalone AV, Gao XD, Podracky CJ et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2022;40(5):731-40. DOI: 10.1038/s41587-021-01133-w
59. Yarnall MTN, Ioannidi EI, Schmitt-Ulms C et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol 2023;41(4):500-12. DOI: 10.1038/s41587-022-01527-4
60. Jaski BE, Jessup ML, Mancini DM et al; Calcium Up-Regulation by Percutaneous Administration of Gene Therapy In Cardiac Disease (CUPID) Trial Investigators. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009;15(3):171-81. DOI: 10.1016/j.cardfail.2009.01.013
61. Greig JA, Martins KM, Breton C et al. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat Biotechnol 2024;42(8):1232-42. DOI: 10.1038/s41587-023-01974-7
62. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017;31(4):317-34. DOI: 10.1007/s40259-017-0234-5
63. Tabebordbar M, Lagerborg KA, Stanton A et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021;184(19):4919-4938.e22. DOI: 10.1016/j.cell.2021.08.028
64. Hinderer C, Katz N, Buza EL et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther 2018;29(3):285-298. DOI: 10.1089/hum.2018.015
65. Kim E, Koo T, Park SW et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017;8:14500. DOI: 10.1038/ncomms14500
66. Appleby JH, Zhou K, Volkmann G, Liu XQ. Novel split intein for trans-splicing synthetic peptide onto C terminus of protein. J Biol Chem 2009;284(10):6194-9. DOI: 10.1074/jbc.M805474200
67. Ling X, Chang L, Chen H et al. Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Mol Cell 2021;81(22):4747-4756.e7. DOI: 10.1016/j.molcel. 2021.09.021
68. Kenjo E, Hozumi H, Makita Y et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun 2021;12(1):7101. DOI: 10.1038/s41467-021-26714-w
69. Palaz F. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne's Muscular Dystrophy. N Engl J Med 2023;389(23):2210-2211. DOI: 10.1056/NEJMc2312288.
70. Mitchell MJ, Billingsley MM, Haley RM et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021;20(2):101-24. DOI: 10.1038/s41573-020-0090-8
71. Wei T, Sun Y, Cheng Q et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun 2023;14(1):7322. DOI: 10.1038/s41467-023-42948-2
72. Musunuru K, Chadwick AC, Mizoguchi T et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021;593(7859):429-34. DOI: 10.1038/s41586-021-03534-y

For citation:Gretseva T.A., Enikeyev D.A., Shaidullina E.A., Djanbekova L.M., Karpelevich V.S., Kuzhina A.R., Magomedova A.I., Valeev I.R., Gimranova G.S., Sayarova L.M., Klavdieva N.A., Ataeva A.A., Salimova N.Yu., Menyasheva D.R., Berdiev B.M. Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases. Clinical review for general practice. 2025; 6 (1): 29–40 (In Russ.). DOI: 10.47407/kr2024.6.1.00547


All accepted articles publish licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

  • About
  • Editorial board
  • Ethics
  • For authors
  • Author fees
  • Peer review
  • Contacts

oa
crossref
анри


  Indexing

doaj
elibrary

Address of the Editorial Office:

127055, Moscow, s/m 37

Correspondence address:

115054, Moscow, Zhukov passage, 19, fl. 2, room XI


Managing Editor:

+7 (495) 926-29-83

id@con-med.ru