Аннотация
В статье обобщены современные научные данные о сущности, распространении, клиническом течении и патогенезе осложнений и последствий инфекции COVID-19. Рассмотрены возникающие когнитивные расстройства, эректильная и эндотелиальная дисфункции, окислительный стресс, гормональные нарушения. Уточнено место использования антиоксидантов, витаминов и микроэлементов
у больных COVID-19 и постковидным синдромом в терапии и профилактике осложнений на примере комплекса Селцинк Плюс.
у больных COVID-19 и постковидным синдромом в терапии и профилактике осложнений на примере комплекса Селцинк Плюс.
Ключевые слова: пандемия, коронавирус, патогенность, вирулентность, оксидативный стресс, когнитивные расстройства, микроэлементы, витамины, антиоксиданты, постковидный синдром.
Об авторе
В.В. Борисов
Российское общество урологов, Москва, Россия
vvb56@yandex.ru
Список литературы
1. Сивков А.В., Корякин А.В., Синягин А.А. и др. Мочеполовая система и COVID-19: некоторые аспекты. Экспериментальная и клиническая урология. 2020; 2: 18–23.
[Sivkov A.V., Koryakin A.V., Sinyagin A.A. et al. The genitourinary system and CAVID-19: some aspects. Experimental and clinical urology. 2020; 2: 18–23 (in Russian).]
2. Кармазановский Г.Г., Замятина К.А., Сташкив В.И. и др. Компьютерно-томографическая диагностика и мониторинг течения вирусной пневмонии, обусловленной вирусом SARS-CoV-2, при работе «Госпиталя COVID-19» на базе Федерального специализированного медицинского научного центра. Медицинская визуализация. 2020; 24 (2): 11–36.
[Karmazanovskiy G.G., Zamyatina K.A., Stashkiv V.I. et al. Kompyuterno-tomograficheskaya diagnostika i monitoring techeniya virusnoy pnevmonii, obuslovlennoy virusom SARS-CoV-2, pri rabote «Gospitalya COVID-19» na baze Federalnogo spetsializirovannogo meditsinskogo nauchnogo tsentra. Medical Visualization. 2020; 24 (2): 11–36 (in Russian).]
3. Sansone A, Mollaioli D, Ciocca G et al. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J Endocrinol Invest 2021; 44 (2): 223–31. DOI: 10.1007/s40618-020-01350-1
4. Selvaraj K, Ravichandran S, Krishnan S et al. Testicular Atrophy and Hypothalamic Pathology in COVID-19: possibility of the incidence of male infertility and HPG axis abnormalities. Reprod Sci 2021; 1: 1–8. DOI: 10.1007/s43032-020-00441-x
5. Фирсов Н.Н. Микробиология: словарь терминов. М.: Дрофа, 2006.
[Firsov N.N. Mikrobiologiia: slovar' terminov. Moscow: Drofa, 2006 (in Russian).]
6. Асфандияров Ф.Р., Круглов В.А., Выборнов С.В. и др. Постковидный транзиторный гипогонадизм и эректильная дисфункция. Экспериментальная и клиническая урология. 2021; 14 (3): 112–8. DOI: 10.29188/2222-8543-2021-14-3-112-118
[Asfandiiarov F.R., Kruglov V.A., Vybornov S.V. et al. Postkovidnyi tranzitornyi gipogonadizm i erektil'naia disfunktsiia. Eksperimental'naia i klinicheskaia urologiia. 2021; 14 (3): 112–8. DOI: 10.29188/2222-8543-2021-14-3-112-118 (in Russian).]
7. Рекомендации Американского общества андрологии, 2016.
[Guidelines. American Society of Andrology, 2016 (in Russian).]
8. Akhtar S, Das JK, Ismail T et al. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev 2021; 79 (3): 289–300. DOI: 10.1093/nutrit/nuaa063
9. Dharmalingam K, Birdi A, Tomo S et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem 2021: 1–11. DOI: 10.1007/s12291-021-00961-6
10. de Faria Coelho-Ravagnani C, Corgosinho FC, Sanches FFZ et al. Dietary recommendations during the COVID-19 pandemic. Nutr Rev 2021; 79 (4): 382–93. DOI: 10.1093/nutrit/nuaa067
11. Barosso G, Morshadi M, Oehinger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidyl-serin and oxidative stress in human spermatozoa. Hum Reprod 2000; 15 (6): 1338–44. DOI: 10.1093/humrep/15.6.1338
12. Sikka S et al. Redox signaling mechanisms and apoptotic response in human cavernosa under oxidative stress. In: 30th Annual Meeting of American Society of Andrology, March 30-April 5, 2005.
13. Katusic ZS et al. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989.
14. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271:
1424–37.
15. Khan MA et al. The effect of nitric oxide and peroxynitrite on rabbit cavernosal smooth muscle relaxation. World J Urol 2001; 19: 220–224. DOI: 10.1007/s003450000162
16. Jeremy JY et al. Platelets, oxidant stress and erectile dysfunction: an hypothesis. Cardiovasc Res 2000; 46: 50–4. DOI: 10.1016/s0008-6363(00)00009-2
17. Aitken RJ, Paterson M, Fisher H et al. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 1995; 108 (Pt 5): 2017–25.
18. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 2004; 8: 616–27. 19.
19. Божедомов В.А. Мужское бесплодие. М., 2009.
[Bozhedomov V.A. Muzhskoe besplodie. Moscow, 2009 (in Russian).]
20. Armand Zini, Naif Al-Hathal. Antioxidant therapy in male infertility: fact or fiction? Asian J Androl 2011; 13: 374.
21. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 1987; 81: 459–69.
22. De Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl 1992; 13: 368–78.
23. Zini A, Garrels K, Phang D. Antioxidant activity in the semen of fertile and infertile men. Urology 2000; 55: 922–6.
24. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 1987; 8: 338–48.
25. Twigg J, Fulton N, Gomez E et al. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 1998; 13: 1429–36.
26. El-Khoury J, Perera M, Neto AS et al. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol 2021; 93 (5): 3261–7.
27. Skalny AV, Rink L, Ajsuvakova OP et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med 2020; 46 (1): 17–26. DOI: 10.3892/ijmm.2020.4575
28. Jothimani D, Kailasam E, Danielraj S et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis 2020; 100: 343–9. DOI: 10.1016/j.ijid.2020.09.014
29. Heller RA, Sun Q, Hackler J et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol 2021; 38: 101764. DOI: 10.1016/j.redox.2020.101764
30. Samad N, Sodunke TE, Abubakar AR et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14: 527–50. DOI: 10.2147/JIR.S295377
31. Moghaddam A, Heller RA, Sun Q et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020; 12 (7): 2098. DOI: 10.3390/nu12072098
32. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr 2021; 125 (6) :618–27. DOI: 10.1017/S0007114520003128
33. Im JH, Je YS, Baek J et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020; 100: 390–3. DOI: 10.1016/j.ijid.2020.08.018
34. Bae M, Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules 2020; 25 (22): 5346. DOI: 10.3390/molecules25225346
35. Younesian O, Khodabakhshi B, Abdolahi N et al. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol Trace Elem Res 2021: 1–6. DOI: 10.1007/s12011-021-02797-w
36. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143: 109878. DOI: 10.1016/j.mehy.2020.109878
37. Fiorino S, Gallo C, Zippi M et al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res 2020; 32 (10): 2115–31. DOI: 10.1007/s40520-020-01669-y
38. Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021: 1–10. DOI: 10.1017/S0007114521000246
39. Tepasse PR, Vollenberg R, Fobker M et al. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021; 13 (7): 2173. DOI: 10.3390/nu13072173
40. Abioye AI, Bromage S, Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health 2021; 6 (1): e003176. DOI: 10.1136/bmjgh-2020-003176
41. Bae M, Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules 2020; 25 (22): 5346. DOI: 10.3390/molecules25225346
42. Abobaker A, Alzwi A, Alraied AHA. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep 2020; 72 (6): 1517–28. DOI: 10.1007/s43440-020-00176-1
43. Vollbracht C, Kraft K. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a Systematic Review of IV Vitamin C on Fatigue. Nutrients 2021; 13 (4): 1154. DOI: 10.3390/nu13041154
Для цитирования:Борисов В.В. Еще раз о COVID-19 (клиническая лекция). Клинический разбор в общей медицине. 2022; 2: 13–21. DOI: 10.47407/kr2022.3.2.00121
Журнал предоставляет свободный доступ с возможностью использовать статьи в некоммерческих целях при условии указания авторства в рамках лицензии CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ru)