Аннотация
Биологический взгляд на развитие психических заболеваний описан со времен Гиппократа в его гуморальной теории, рассматривая мозг как место происхождения всех эмоций и, таким образом, отвергал более ранние теории, утверждавшие, что психические явления обусловлены божественным вмешательством. Впоследствии его идеи трансформировались в том числе и в утверждение Крепелина, который описал психическое расстройство как «закономерный биологический процесс», на основе которого предложил делить заболевания на две большие группы – dementia praecox и la folie circulaire. В основе разделения лежали нарушения интеллекта, которые более выражены у пациентов с шизофренией, чем у пациентов с биполярным расстройством. Современные исследования обнаружили значительное клиническое и генетическое сходство между двумя расстройствами. Но, в отличие от шизофрении, у людей с биполярным расстройством данные не указывают на снижение интеллекта, и даже напротив, риск развития биполярного расстройства связан с более высоким преморбидным IQ. Можем ли мы предположить, что гены, которые определяют это когнитивное различие, – это просто те гены и их мутации, которые определяют более низкий IQ в общей популяции, а не гены, связанные с болезнью. Другим общим феноменом, выявленным в современности, является высокая эффективность антипсихотиков при обоих заболеваниях. Большую эффективность и безопасность демонстрируют современные антипсихотики, которые мы обсудим в данной статье.
Ключевые слова: шизофрения, биполярное аффективное расстройство, когниция, антипсихотики, луразидон.
Ключевые слова: шизофрения, биполярное аффективное расстройство, когниция, антипсихотики, луразидон.
Об авторе
А.Р. Асадуллин1, И.С. Ефремов1,2, Ф.Ш. Шагиахметов3, Р.Р. Борукаев4, И.В. Колыванова4
1ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, Уфа, Россия;
2ФГБОУ ВО «Уфимский университет науки и технологий», Уфа, Россия;
3ФГБУ «Национальный медицинский исследовательский центр психиатрии и наркологии им. В.П. Сербского» Минздрава России, Москва, Россия;
4ООО «Анджелини Фарма Рус», Москва, Россия
droar@yandex.ru
Список литературы
1. Angst J, Ajdacic-Gross V, Rössler W. Bipolar disorders in ICD-11: current status and strengths. Int J Bipolar Disorders. 2020; (80):
1–5.
2. Krawczyk P, Święcicki Ł. ICD-11 vs. ICD-10-a review of updates and novelties introduced in the latest version of the WHO International Classification of Diseases. Psychiatr Pol. 2020; 54 (1): 7–20.
3. Асадуллин А.Р., Гасенко К.А. Потенциальная роль антипсихотиков третьего поколения в снижении зависимости у пациентов с биполярным расстройством. Современная терапия психических расстройств. 2023; (1): 15–22.
Asadullin AR, Gasenko KA. The potential role of third-generation antipsychotics in reducing dependence in patients with bipolar disorder. Modern Therapy оf Mental Disorders. 2023; (1): 15–22 (in Russian).
4. Rognli EB et al. Transition from substance-induced psychosis to schizophrenia spectrum disorder or bipolar disorder. Am J Psychiatry. 2023; 180 (6): 437–44.
5. Kuhns L et al. Associations between cannabis use, cannabis use disorder, and mood disorders: longitudinal, genetic, and neurocognitive evidence. Psychopharmacology. 2022; 239 (5): 1231–49.
6. Крупицкий Е.М., Ахметова Э.А., Асадуллин А.Р. Фармакогенетика химических зависимостей. Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. 2019; (4–1): 12–20.
Krupitsky EM, Akhmetova EA, Asadullin AR. Pharmacogenetics of chemical dependencies. Review of Psychiatry and Medical Psychology named after V.M. Bekhterev. 2019; (4–1): 12–20 (in Russian).
7. Tarzian M et al. Lurasidone for Treating Schizophrenia and Bipolar Depression: A Review of Its Efficacy. Cureus. 2023; 15 (4).
8. Stahl EA et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature genetics. 2019; 51 (5): 793–803.
9. Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. Science NY. 2018; 360 (6395).
10. Rybakowski JK. Application of Antipsychotic Drugs in Mood Disorders. Brain Sciences. 2023; 13 (3): 414.
11. Ohi K et al. Cognitive performances across individuals at high genetic risk for schizophrenia, high genetic risk for bipolar disorder, and low genetic risks: a combined polygenic risk score approach. Psychological Medicine. 2022: 1–10.
12. Fett AKJ et al. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neuroscience Biobehavioral Rev. 2011; 35 (3): 573–88.
13. Bora E. Neurodevelopmental origin of cognitive impairment in schizophrenia. Psychological medicine. 2015; 45 (1): 1–9.
14. Гашкаримов В.Р. и др. Структура инсомнии и ее связь с выраженностью психопатологических симптомов у людей с шизофренией (пилотное исследование). Психическое здоровье. 2021; (7): 36–42.
Gashkarimov VR et al. The structure of insomnia and its relationship with the severity of psychopathological symptoms in people with schizophrenia (pilot study). Mental Health. 2021; (7): 36–42 (in Russian).
15. Stone WS et al. Neurodegenerative model of schizophrenia: Growing evidence to support a revisit. Schizophrenia Res. 2022; 243: 154–62.
16. Knowles EEM et al. The puzzle of processing speed, memory, and executive function impairments in schizophrenia: Fitting the pieces together. Biological psychiatry. 2015; 78 (11): 786–93.
17. Li J et al. New insight in the cross-talk between microglia and schizophrenia: From the perspective of neurodevelopment. Frontiers in Psychiatry. 2023; 14: 26–32.
18. Smeland OB et al. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Molecular psychiatry. 2020; 25 (4): 844–53.
19. Karpinski RI et al. High intelligence: A risk factor for psychological and physiological overexcitabilities. Intelligence. 2018; 66: 8–23.
20. Williams CM et al. High Intelligence is not a Risk Factor for Mental Health Disorders. medRxiv. 2022.05. 26.22275621: 22–27.
21. Williams CM et al. High intelligence is not associated with a greater propensity for mental health disorders. Eur Psychiatry. 2023; 66 (1): 13–8.
22. Shevchenko V et al. Relations between intelligence index score discrepancies and psychopathology symptoms in the EDEN mother-child birth cohort. Intelligence. 2023; 98: 101753.
23. Bohlken J, Bauer M, Kostev K. Drug treatment for patients with bipolar disorders in psychiatric practices in Germany in 2009 and 2018. Psychiatry Research. 2020; 289: 29–65.
24. Braslow JT, Marder SR. History of psychopharmacology. Annual review of clinical psychology. 2019; 15: 25–50.
25. Nasyrova RF et al. The role of D-Serine and D-aspartate in the pathogenesis and therapy of treatment-resistant schizophrenia. Nutrients. 2022; 14 (23): 5142.
26. Ishigooka J et al. Lurasidone in the long-term treatment of bipolar i depression: a 28-week open label extension study. J Affective Disorders. 2021; 281: 160–7.
27. Shnayder NA et al. Genetic predisposition to schizophrenia and depressive disorder comorbidity. Genes. 2022; (13): 3: 457.
28. Ashok AH, Marques TR, Jauhar S et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017; 22 (5): 666–79. DOI: 10.1038/mp.2017.16. PMID: 28289283; PMCID: PMC5401767.
29. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr Bull. 2009; 35 (3): 549–62. DOI: 10.1093/schbul/sbp006. PMID: 19325164; PMCID: PMC2669582.
30. Okubo Y, Suhara T, Suzuki K et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature. 1997; 385: 634–6.
31. Kosaka J, Takahashi H, ItoH et al. Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sciences. 2010; 86 (21–22): 814–8.
32. Suhara T, Nakayama K, Inoue O et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology. 1992; 106: 14–8.
33. Redlich R, Dohm K, Grotegerd D et al. Reward processing in unipolar and bipolar depression: a functional MRI study. Neuropsychopharmacology. 2015; 40: 1–28.
34. Yip SW, Worhunsky PD, Rogers RD, Goodwin GM. Hypoactivation of the ventral and dorsal striatum during reward and loss anticipation in antipsychotic and mood stabilizer-naive bipolar disorder. Neuropsychopharmacology. 2015; 40: 658–66.
35. Hagele C, Schlagenhauf F, Rapp M et al. Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology. 2015; 232: 331–41.
36. Radua J, Schmidt A, Borgwardt S et al. Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis. JAMA Psychiatry. 2015; 72: 1243–51.
37. Yan C, Yang T, Yu QJ et al. Rostral medial prefrontal dysfunctions and consummatory pleasure in schizophrenia: a meta-analysis of functional imaging studies. Psychiatry Res. 2015; 231: 187–96.
38. Yatham LN et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disorders. 2018; 20 (2): 97–170.
39. Beaulieu JM, Sotnikova TD, Yao WD et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004; 101: 5099–104.
40. Haddad PM, Correll CU. The acute efficacy of antipsychotics in schizophrenia: a review of recent meta-analyses. Ther Adv Psychopharmacol. 2018; 8 (11): 303–18. DOI: 10.1177/2045125318781475. PMID: 30344997; PMCID: PMC6180374.
41. Faden J. How do we select an antipsychotic for those with schizophrenia? Exp Opinion Pharmacother. 2019; 20 (18): 2195–9. DOI: 10.1080/14656566.2019.1674284
42. Caroff SN, Hurford I, Lybrand J et al. Movement disorders induced by antipsychotic drugs: implications of the CATIE schizophrenia trial. Neurol Clin. 2011; 29 (1): 127,48,viii.
43. Bak M, Fransen A, Janssen J et al. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS One. 2014; 9 (4): e94112.
44. Huhn M, Nikolakopoulou A, Schneider-Thoma J et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet. 2019; 394 (10202): 939–51.
45. Zhang Y, Liu Y, Su Y et al. The metabolic side effects of 12 antipsychotic drugs used for the treatment of schizophrenia on glucose: a network meta-analysis. BMC Psychiatry. 2017; 17 (1): 373,017-1539-0.
46. Gomes J, Sousa A, Lima G. Hyperprolactinemia: Effect On Mood? Eur Psychiatry. 2015; (30) (Suppl. 1): 714. ISSN 0924-9338. DOI: 10.1016/S0924-9338(15)30564-2
47. Faron-Górecka A, Latocha K, Pabian P et al. The Involvement of Prolactin in Stress-Related Disorders. Int J Environmental Res Public Health. 2023; 20 (4): 3257. DOI: 10.3390/ijerph20043257
48. Cavallaro R, Cocchi F, Angelone SM et al. Cabergoline treatment of risperidone-induced hyperprolactinemia: a pilot study. J Clin Psychiatry. 2004; 65 (2): 187–90. DOI: 10.4088/jcp.v65n0207. PMID: 15003071.
49. Meng M, Li W, Zhang S et al. Using aripiprazole to reduce antipsychotic-induced hyperprolactinemia: meta-analysis of currently available randomized controlled trials. Shanghai Arch Psychiatry. 2015; 27 (1): 4–17. DOI: 10.11919/j.issn.1002-0829.215014
50. Mailman RB, Murthy V. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des. 2010; 16 (5): 488–501. DOI: 10.2174/138161210790361461. PMID: 19909227; PMCID: PMC2958217.
51. Tanahashi S, Yamamura S, Nakagawa M et al. Dopamine D2 and serotonin 5-HT1A receptors mediate the actions of aripiprazole in mesocortical and mesoaccumbens transmission. Neuropharmacology. 2012; 62 (2): 765–74. DOI: 10.1016/j.neuropharm.2011.08.031
52. Stahl SM. Multifunctional drugs: a novel concept for psychopharmacology. CNS Spectr. 2009; 14 (2):71–3. DOI: 10.1017/s1092852900000213. PMID: 19238121.
53. Inder WJ, Castle D. Antipsychotic-induced hyperprolactinaemia. Aust N Z J Psychiatry. 2011; 45: 830–7. DOI: 10.3109/00048674.2011.589044
54. Bressan RA, Erlandsson K, Spencer EP et al. Prolactinemia is uncoupled from central D2/D3 dopamine receptor occupancy in amisulpride treated patients. Psychopharmacology (Berl). 2004; 175 (3): 367–73. DOI: 10.1007/s00213-004-1826-6. PMID: 14997280.
55. Madhusoodanan S, Parida S, Jimenez C. Hyperprolactinemia associated with psychotropics-a review. Human Psychopharmacology: Clin Exp 2010; 25 (4): 281–97. DOI: 10.1002/hup.1116
56. Dehelean L, Romosan AM, Papava I et al. Prolactin response to antipsychotics: An inpatient study. PLoS One. 2020; 15 (2): e0228648. DOI: 10.1371/journal.pone.0228648. PMID: 32017792; PMCID: PMC 6999917.
57. Stahl SM, Cucchiaro J, Simonelli D et al. Effectiveness of lurasidone for patients with schizophrenia following 6 weeks of acute treatment with lurasidone, olanzapine, or placebo: a 6-month, open-label, extension study. J Clin Psychiatry. 2013; 74 (5): 507–15. DOI: 10.4088/JCP. 12m08084. PMID: 23541189.
58. Loebel A, Cucchiaro J, Sarma K et al. Efficacy and safety of lurasidone
80 mg/day and 160 mg/day in the treatment of schizophrenia: a randomized, double-blind, placebo- and active-controlled trial. Schizophr Res. 2013; 145 (1–3):101–9. DOI: 10.1016/j.schres.2013.01.009. Epub 2013 Feb 13. PMID: 23415311.
59. Latuda Assessment report (EMA/113836/2014). Rev05.13. Page: 124–136/147. URL: https://www.ema.europa.eu/en/documents/assessment-report/latuda-epar-public-assessment-report_en.pdf
60. Huang M, Horiguchi M, Felix AR, Meltzer HY. 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux. Neuroreport. 2012; 23 (7): 436–40. DOI: 10.1097/WNR.0b013e328352de40. PMID: 22415605.
61. Ishibashi T et al. Pharmacological Profile of Lurasidone, a Novel Antipsychotic Agent with Potent 5-Hydroxytryptamine 7 (5-HT7) and 5-HT1A Receptor Activity. J Pharmacol Experimental Therapeutics. 2010; 334 (1): 171–81.
62. Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009; 23 (1): 65–73. DOI: 10.1177/ 0269881107082944. PMID: 18308814.
63. Wong DF, Kuwabara H, Brašić JR, Stock T et al. Determination of dopamine D₂ receptor occupancy by lurasidone using positron emission tomography in healthy male subjects. Psychopharmacology (Berl). 2013; 229 (2): 245–52. DOI: 10.1007/s00213-013-3103-z. PMID: 23649882.
64. Шагиахметов Ф., Анохин П., Шамакина И. Вортиоксетин: механизмы мультимодальности и клиническая эффективность. Социальная и клиническая психиатрия. 2016; (4).
Shagiakhmetov F, Anokhin P, Shamakina I. Vortioxetine: mechanisms of multimodality and clinical efficacy. Social and Clinical Psychiatry. 2016; (4) (in Russian).
65. Clifton NE et al. Dynamic expression of genes associated with schizophrenia and bipolar disorder across development. Translational psychiatry. 2019; 9 (1): 74.
66. Robinson N, Bergen SE. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: current knowledge and future directions. Frontiers Genetics. 2021; 12: 68–76.
67. Lizano P et al. A meta-analysis of retinal cytoarchitectural abnormalities in schizophrenia and bipolar disorder. Schizophrenia bulletin. 2020; 46 (1): 43–53.
68. Citrome L, Cucchiaro J, Sarma K et al. Long-term safety and tolerability of lurasidone in schizophrenia: a 12-month, double-blind, active-controlled study. Int Clin Psychopharmacol. 2012; 27 (3): 165–76. DOI: 10.1097/YIC.0b013e32835281ef. PMID: 22395527.
69. George SR, Watanabe M, Di Paolo T et al. The functional state of the dopamine receptor in the anterior pituitary is in the high‐affinity form. Endocrinology. 1985; 117: 690–7.
70. Howes OD, Kambeitz J, Kim E et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012; 69 (8): 776–86. DOI: 10.1001/archgenpsychiatry.2012.169. PMID: 22474070; PMCID: PMC3730746.
71. Meyer JM, Mao Y, Pikalov A et al. Weight change during long-term treatment with lurasidone: pooled analysis of studies in patients with schizophrenia. Int Clin Psychopharmacol. 2015; 30 (6): 342–50. DOI: 10.1097/YIC.0000000000000091. PMID: 26196189; PMCID: PMC4593468.
72. Okubo R et al. Current limitations and candidate potential of 5-HT7 receptor antagonism in psychiatric pharmacotherapy. Frontiers Psychiatry. 2021; (12): 623684.
73. Pearlson GD, Wong DF, Tune LE et al. In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry. 1995; 52: 471–7.
74. Seeman P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Ther. 2011; 17 (2): 118–32.
75. Seeman P, Schwarz J, Chen JF et al. Psychosis pathways converge via D2high dopamine receptors. Synapse. 2006; 60: 319–46.
76. Wong DF, Pearlson GD, Tune LE et al. Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J Cereb Blood Flow Metab. 1997; 17: 331–42.
77. Yatham LN, Liddle PF, Lam RW et al. PET study of the effects of valproate on dopamine D(2) receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania. Am J Psychiatry. 2002; 159: 1718–23.
78. Yatham LN, Liddle PF, Shiah IS et al. PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry. 2002; 159: 768–74.
Для цитирования:Асадуллин А.Р., Ефремов И.С., Шагиахметов Ф.Ш., Борукаев Р.Р., Колыванова И.В. А так ли был прав Крепелин? Попытка прояснить взаимосвязь между шизофренией и биполярным аффективным расстройством. Клинический разбор в общей медицине. 2023; 4 (6): 20–28. DOI: 10.47407/kr2023.4.5.00267
Журнал предоставляет свободный доступ с возможностью использовать статьи в некоммерческих целях при условии указания авторства в рамках лицензии CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ru)